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Practical Information

Room location & Registration The EUROMECH-Colloquium 591 will be held at the

Polytechnical University of Bari (Via Amendola 126/B, Bari, you’ll find a map in figure 1),

about 20 minutes walking distance from the Railway Station.

Figure 1: Map of the neighbourhood of the Politecnico di Bari, where the Euromech 591 will be

held.

Following the signs at the entrance of the building (Via Amendola 126/B) you’ll find the reg-

istration desk that will be open on 18th and 19th September from 8 to 8:45 am for registration.

Social Events Lunches and coffee breaks are planned during the conference according to the

time plan and will be served right in front of the conference room. Furthermore, two social

events are planned:

• Monday, the 18th of September (from 7 pm): The Conference participants are invited to a

welcoming cocktail at the ’Circolo della Vela’, located in Bari’s marina, where drinks and

snacks will be offered. For reaching the marina, a bus will be available right out of the

conference room at 6 pm.

• Thuesday, the 19th of September (from 8 pm): Conference Dinner at Polignano a Mare,

see map (2) and pictures (3). Polignano, a small city in province of Bari, is famous for

its stunning old town placed on a rocky promontory. The high terraces on the see are the

main attraction of this ancient town which was part of the Ancient Greece with the name

of ”Neapolis”. Strolling in Polignano’s alleys one can still feel a Greek flavour in the design

and layout of the town. A short boat trip will allow to visit some of the vast sea caves that

penetrate right under and into the old town. A bus will drive the conference participants in

Polignano at 5pm leaving plenty of time for visiting the town. Then, at 8pm, Social Dinner

will be served in a famous restaurant on the rocky promontory overlooking the sea.



Figure 2: Puglia map.

Figure 3: View of Polignano a Mare.



How to get to the conference?

By plane: via the Bari-Palese Airport

Be aware that there are direct flights to Bari from many European cities (from Paris Beauvais,

London Stansted and so on). Don’t forget to check the available flights on low-cost airlines which

provide many of those direct (and very cheap) flights.

From the Airport take the train to Bari Centrale Station, whose timetable and price can be

found at the following link: www.ferrovienordbarese.it/times

By train

Get off at Bari Centrale Station and enjoy a 20 minutes walk towards the Politecnico of

Bari following the map in figure 4 or take bus 22 in Via Melo 230 (right in front of the railway

station) to Mungivacca, and get off at the stop Amendola, ang. c. ulpiani (you’ll find further

information at the following link: www.amtab.it ).

Figure 4: Walking itinerary from the Railway Station to the conference room

Wi-Fi All the campus is covered by the Wi-Fi network Eduroam. In the conference room and

close to it you’ll have access to a dedicated Wi-Fi network, whose access details will be provided

during the registration.



Public transport For your convenience, you’ll find below a map of the metro connecting the

airport with the Railway Station (fig. 5) as well as a map of the city with the bus lines (fig. 6).

Figure 5: Subway map.



Figure 6: City map of Bari with bus connections.





Schedule
September 18, 08:00 - 18:00

08:00 - 08:45 Registration

08:45 - 09:00 Welcome and opening remarks. S. Cherubini

Keynote lecture - Chair: F. Gallaire

09:00 - 09:45 DAAA Mean-flow linear stability: theory and application

D. Sipp ONERA-Meudon to the identification of coherent structures,

France data-assimilation and flow control in turbulent flows

Session: Mean Flows and Resolvent - Chair: F. Gallaire

09:45 - 10:00 L. Siconolfi LFMI/EPFL Mode selection criteria in globally stable jet:

Switzerland linear and nonlinear analysis

10:00 - 10:15 L. Tuckerman PMMH/ESPCI Computing optimal forcing using

France Laplace preconditioning

10:15 - 10:30 F. Gallaire LFMI/EPFL Predicting the helical vortex breakdown

Switzerland precessing frequency by global stability analysis

10:30 - 10:45 Y. Bengana PMMH/ESPCI Linear stability of mean flows

France and frequency prediction

10:45 - 11:15: Coffee break

Session: Subcritical transition - Chair: L. Tuckerman

11:15 - 11:30 Y. Duguet LIMSI-CNRS Solitary turbulent stripes

Paris-Saclay Univ. in channel flow

11:30 - 11:45 F. Reetz ECPS/EPFL Invariant solutions of turbulent-laminar

Switzerland stripes in plane Couette flow

11:45 - 12:00 S. Azimi ECPS/EPFL Modified snaking in plan Couette flow

Switzerland with wall-normal suction

12:00 - 12:15 O. Semeraro DMMM Exploring the lower branch in Couette

Pol. di Bari flows: a sensitivity analysis

12:15 - 12:30 M. Farano DMMM Connecting exact coherent states

Pol. di Bari in plane Couette flow

12:30 - 12:45 S. Cherubini DMMM Optimal oblique transition

Pol. di Bari

12:45 - 13:00 J.E. Wesfreid PMMH/ESPCI Dynamics and large scale flows

France around turbulent spots

13:00 - 14:30: Lunch

Session: Modal instabilities (1) - Chair: J. E. Wesfreid

14:30 - 14:45 A. M. Bucci DynFluid-ENSAM Roughness-induced transition

France by quasi-resonance of a varicose global mode

14:45 - 15:00 D. Puckert IAG Experimental investigation on global instability

Stuttgart Univ. of a roughness-disturbed laminar boundary-layer

15:00 - 15:15 Y. Wu IAG Linear stability analysis of rotating-cylindrical

Stuttgart Univ. roughness flow

15:15 - 15:30 A. Randriamampianina Aix-Marseille Univ. Transition to Geostrophic

France turbulence within a baroclinic cavity

15:30 - 15:45 L. Pastur LIMSI/CNRS 3-D pattern organization in an open cavity flow

Paris Saclay Univ. at the onset of centrifugal instability

15:45 - 16:00 J.-C. Loiseau DynFluid/ENSAM Experimental and numerical investigation

France of the transition scenario in

a 3-D shear-driven cavity flow

16:00 - 16:30: Coffee break



Session Wake instabilities - Chair: T. Colonius

16:30 - 16:45 J. Leontini Swinburne Univ. of Tech. 3-D transition in the the wake

Australia of an elliptic cylinder

16:45 - 17:00 F. Giannetti DIIN Effects of base-flow variations on the secondary

Università di Salerno instability in the wake of the circular cylinder

17:00 - 17:15 D. Jallas DAAA-ONERA linear and non-linear perturbation analysis of the

France symmetry-breaking in time-periodic propulsive wake

17:15 - 17:30 O. Cadot IMSIA-ENSTA Disturbed feedback flow of the static turbulent

France symmetry breaking mode of the Ahmed body

17:30 - 17:45 M. Lorite-Dı́ez Univ. de Jaén wake control of D-shaped bodies through

Spain optimized rear cavity

17:45 - 18:00 L. Magri Univ. of Cambridge Symmetry breaking in 3-D bluff-body wakes

19:00 - 20:00: Welcoming cocktail



September 19, 08:45 - 16:30

Keynote lecture - Chair: P. de Palma

08:45 - 09:30 Mathematics Institute Something old, something new

B. Barkley University of Warwick in transition and instability

UK

Session: Transitional and turbulent flows - Chair: P. de Palma

09:30 - 09:45 Y. Hwang Dep. of Aeronautics Energy production and self-sustained

Imperial College turbulence at the Kolmogorov microscale

09:45 - 10:00 M. Chantry PMMH/ESPCI Universal continuous transition to turbulence

France in a planar channel flow

10:00 - 10:15 T. Schneider ECPS-EPFL From Turbulence transition to shell buckling -

Switzerland what load can a cylinder shell carry?

10:15 - 10:30 G. Chini Univ. of New Hampshire A self-sustaining process theory for coupled

Durham uniform momentum zones and vortical fissures

USA in the inertial region of turbulent wall flows

10:30 - 10:45 G. Gallino LFMI-EPFL Edge states control droplet break-up

Switzerland in uniaxial extensional flows

10:45 - 11:15: Coffee break

Session: Modal and non-modal Instabilities - Chair: S. Cherubini

11:15 - 11:30 A. Cadiou LMFA Linear and nonlinear space-time dynamics of

Univ. de Lyon optimal wavepackets for streaks

France in a channel entrance flow

11:30 - 11:45 E. Heifetz Dep. of Geosciences On the role of vortex stretching in

Tel-Aviv Univ. energy optimal growth of 3-D perturbations

Israel on plane parallel shear flows

11:45 - 12:00 N. Navrose DAAA-ONERA Non-linear optimal perturbation in

Meudon, France single and double vortex systems

12:00 - 12:15 G. Rigas Caltech one-way Navier-Stokes equations:

Pasadena, USA optimal disturbances

12:15 - 12:30 B. Lebon LOMC Experiments with disturbances on the flow

Univ. du Havre through a sudden-expansion in a circular pipe

12:30 - 12:45 F. Picella DynFluid-ENSAM Passive transition control in

France superhydrophobic channel flow

12:45 - 13:00 M. Safdari-Shadloo CORIA-CNRS Transition to turbulence in

France sudden-expansion pipe flow

13:00 - 14:30: Lunch

Session: Rotating Flows and Centrifugal instabilities - Chair: L. Pastur

14:30 - 14:45 H. Herrero Dep. Matemáticas Route to chaos from axisymmetric thermal

Univ. de Castilla-La Mancha vertical vortices in a rotating cylinder

14:45 - 15:00 J. O. Rodŕıguez Universidad de Navarra Experimental study of a rotating

Spain split-cylinder flow. First results

15:00 - 15:15 S. Viaro Univ. of Sheffield Linear evolution of compressible

Sheffield Görtler instability triggered by

UK free-stream vortical disturbances

15:15 - 15:30 M. Mendez-González CORIA-CNRS Boundary-layer transition over concave

France surfaces caused by centrifugal forces

15:30 - 16:00: Coffee break

17:30: Departure for dinner

20:00 - 24:00: Conference Dinner at Polignano a Mare



September 20, 08:45 - 14:45

Keynote lecture - Chair: D. Sipp

08:45 - 09:30 Engineering Department Nonlinear thermoacoustics:

M. Juniper University of Cambridge flames on the edge of chaos

UK

Session: Control and Reduced Models - Chair: D. Sipp

09:30 - 09:45 C. Leclercq DAAA-ONERA Closed-loop flow control using

Meudon-France a linearized approach around the mean flow

09:45 - 10:00 C. Mimeau M2N-CNAM Effect of porous coatings on flows around

Paris, France 3-D hemisphere: application to flow control

10:00 - 10:15 S. Le Clainche Univ. Politécnica de Madrid A method to study flow structures

Madrid, Spain

10:15 - 10:30 A. Towne CTR Stanford Univ. Spectral POD and its connection

CA, USA with DMD and resolvent analysis

10:30 - 10:45 O. Schmidt Caltech Low-rank behavior of turbulent jets

Pasadena, USA

10:45 - 11:00 K. Y. Volokh Technion, I.I.T. Delay of the pipe flow instability

Israel via polymer solute

11:00 - 11:30: Coffee break

Session: Modal instabilities (2) - Chair: J.-C. Loiseau

11:30 - 11:45 Y. Guevel Univ. Bretagne Sud Numerical bifurcation analysis of 3-D steady flows

Lorient, France in a sudden-expansion

11:45 - 12:00 A. Sansica DynFluid-ENSAM 3-D instability of flow around the sphere

Paris, France

12:00 - 12:15 J. Canton Linné Flow Center Subcritical and supercritical transition

KTH, Stockholm, Sweden in curved pipes

12:15 - 12:30 T. Colonius Caltech One-way Navier-Stokes equations:

Pasadena Global stability analysis

USA via efficient spatial marching

12:30 - 12:45 R. Longobardi IMFT Instability of the flow across

Toulouse, France a circular aperture in a thick plate

12:45 - 13:00 C. G. Hernandez Dep. of Mathematics Receptivity of a compressible boundary-layer

Imperial College, UK to interactions between impinging acoustic waves

13:00 - 13:15 Closing remarks. J.-C. Robinet

13:15 - 14:45: Lunch
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Mean-flow linear stability: theory and applications to the identification of coherent structures, data-

assimilation and flow control in turbulent flows 
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In this talk, we will present the basics of mean-flow linear stability analysis in turbulent flows. We will highlight in particular the 

importance of the resolvent operator and of its optimal singular modes and stress their relationship with the two-point correlation 

function 𝑅(𝑥, 𝑥′, 𝜏) which is classically introduced in turbulence. We will then illustrate applications of these concepts for: 

 the identification of coherent structures in a turbulent backward facing step flow [2]; 

 the reconstruction of unsteady data in a transitional jet flow from the sole knowledge of the mean-flow and unsteady data at 

one point [1] 

 open-loop flow control of the vortex-shedding frequency in a D-shaped bluff-body [3] 

 closed-loop control in an open-cavity flow at Re=7500.   

Finally, we will hightlight current limitations of this approach.  

 

 
 

 
Figure 1. Comparison of the jet axial velocity fluctuation between (a): the reconstructed field and (b): the PIV field at 

some specific time. [1] 
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MODE SELECTION CRITERIA IN A GLOBALLY STABLE JET: LINEAR AND NONLINEAR
ANALYSIS

Lorenzo Siconolfi, Francesco Viola & François Gallaire
Laboratory of Fluid Mechanics and Instabilities, École Polytechnique Fédérale de Lausanne,

Lausanne, CH-1015, Switzerland

When jet flows are considered, large-scale orderly perturbations occur both in laminar and turbulent regimes. In the case
of an isothermal jet, these perturbations have been experimentally studied in the seminal work documented in [1]. In
particular, it was shown that increasing the Reynolds number from 102 to 103 (based on the diameter of the jet D and
the centreline velocity at the exit jet plane U0) led to the sequential observation of sinusoidal, helical and axisymmetric
periodic structures, with a dominant Strouhal number of about 0.3. Moreover, when a controlled harmonic forcing is
applied, the maximum disturbance amplification was obtained for a larger Strouhal number, typically in between 0.3 and
0.45, depending on the intensity of the external forcing.

In a locally parallel assumption, the results of a linear stability analysis [2, 3] show that the axisymmetric (m = 0) and
helical (m = 1) modes are the most spatially unstable. In particular, axisymmetric perturbations are more amplified in
the potential core region close to the exit jet plane. Further downstream, where the shear layers thicken, helical modes are
promoted [4]. In a fully non-parallel framework, modal and non-modal analyses show that the flow is globally stable and
thus the periodic structures are the result of a strong amplification experienced by external disturbances [5]. Moreover,
considering mainly axisymmetric forcing and perturbations, the largest amplification of external forcing has been found
for a Strouhal number around 0.45.

In this perspective, we study here the amplification of spiralling modes developing on a submerged incompressible jet.
The mode competition between axisymmetric and single helical structures is investigated numerically by means of linear
and nonlinear approaches. In the framework of global resolvent analysis, the linear optimal perturbations to a harmonic
inlet forcing at different frequencies and azimuthal modes are computed (figure 1a). Consequently, the nonlinear responses
to the same inlet forcing are calculated through three-dimensional Direct Numerical Simulations using the open-source
spectral code Nek5000 [6] (figure 1b). The energy gain of the global response and the structure of the corresponding
dominant mode are studied by varying the amplitude of the forcing, thus spanning from a linear to a fully nonlinear flow
response. Hence, the effect of nonlinearity on the mode selection mechanism is finally discussed.
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Figure 1. (a) Linear optimal amplification of harmonic forcing at the inlet for azimuthal numbers m=0,1; (b) Example of the nonlinear
velocity response for an incompressible round jet at Re = 400 and Strouhal number St = ωD/2πU0 = 0.4.
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COMPUTING OPTIMAL FORCING USING LAPLACE PRECONDITIONING

M. Brynjell-Rahkola1, L.S. Tuckerman2, P. Schlatter1 and D. S. Henningson1
1 Linné FLOW Centre, SeRC, KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

2 PMMH (UMR 7636 CNRS - ESPCI - UPMC Paris 6 - UPD Paris 7), 10 rue Vauquelin, 75005 Paris, France

Along with time integration, steady-state solving and linear stability analysis, the calculation of transient growth and of
optimal forcing have become part of the toolbox of hydrodynamic stability theory. When a system is linearly stable, it
may nevertheless undergo amplification due to a harmonic driving force, a situation described by

∂q

∂t
= Aq + feiωt. (1)

If all of the eigenvalues of A have negative real part, then asymptotically as t→∞, the solution q tends to

q(x, t) = eAtc(x)− (A− iωI)−1f(x)eiωt → −(A− iωI)−1f(x)eiωt. (2)

We seek the optimal forcing of the system, i.e. the frequency ω and forcing profile f that maximize the amplification

G(ω) ≡ max
‖f‖6=0

‖(A− iωI)−1f‖
‖f‖

= maximum eigenvalue of
[
(A− iωI)(A† + iωI)

]−1
. (3)

The usual method [1] for calculating optimal forcing for large problems in two or three spatial dimensions is by repeated
time integration of (1) and its adjoint. This is necessarily very time consuming because time-integration algorithms
require a small timestep in order to be valid. We instead use (3) directly by calculating the largest eigenvalue of the
operator

[
(A− iωI)(A† + iωI)

]−1
. Because the operator is assumed to be too large to diagonalize directly, we use

the power method. To perform inversions, we carry out conjugate gradient iteration, using preconditioned versions of
(A − iωI) and its adjoint that arise naturally from their time-stepping codes when ∆t is taken to be large [2, 3]. We
validate the new method on the 2D lid-driven cavity. For Re = 100 the new method is faster than the time-integration
algorithm by factors of 3 and 10, respectively, for the frequencies ω = 3 and ω = 0. The optimal gain, forcing and
response for Re = 8015 are shown in figure 1. Details are given in [4].
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Figure 1. Optimal forcing for the 2D lid-driven cavity at Re = 8015. Left: amplification G(ω) has a maximum at ω = 2.6875.
Middle and right: real part of the optimal forcing profile f(x) and response (A − iωI)−1f(x) for these parameters. The imaginary
parts of both profiles resemble rotated versions of the real parts.
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PREDICTING THE HELICAL VORTEX BREAKDOWN PRECESSING FREQUENCY BY
GLOBAL STABILITY ANALYSIS

François Gallaire, Simon Pasche & François Avellan
Laboratory of Fluid Mechanics and Instabilities, EPFL, Lausanne, Switzerland

Vortex breakdown is a characteristic phenomenon affecting swirling jet and wake flows. It is associated to a sudden change
of the flow topology when the swirl number S, defined as the ratio between the characteristic tangential velocity and the
centerline axial velocity, reaches a critical value. While the flow remains columnar below this treshold, it suddenly
changes topology into several possible vortex breakdown states, like the bubble vortex breakdown characterized by an
axisymmetric recirculation region or the helical vortex breakdown, which sheds a single or double spiral, which coils in
space and rotates in time.
The observation that helical instabilities could become absolutely unstable in swirling wakes has led to the interpretation
of spiral vortex breakdown as a secondary instability of axisymmetric vortex breakdown [1], using the flow geometry of
[2]. This was confirmed by [3] and [4], who both performed a global linear stability analysis about the axisymmetric base
flow, and successfully described the Hopf bifurcation and the development of the spiral vortex breakdown coiling around
the axisymmetric breakdown for Reynolds number and swirl number close to Re = 200 and S = 1. Such global stability
analysis about the axisymmetric base flow is relevant at the onset of the instability but one may question its validity further
away from threshold. This fundamental issue for the application of global stability analysis to real flows was revived by
[5], who showed that the frequency of the Bénard-von-Karman vortex street in the cylinder wake was correctly captured
by a global linear stability analysis around the mean flow while the prediction from the linearization around the base flow
quickly failed when the Reynolds number was increased.
In this study, we first discus the validity of the base flow and mean flow stability analysis in predicting the frequency
of the self-sustained single spiral vortex breakdown mode appearing for sufficient swirl and Reynolds numbers in the
flow geometry of [2]. Fixing the swirl number to S = 1.095, we observe that both coincide away from the critical
Reynolds number at the bifurcation threshold Re = 143 until Re ∼ 200. For larger Reynolds number, the mean flow
eigenvalue analysis provides an excellent prediction of the dominant frequency pertaining in the nonlinear simulations, in
stark contrast to the base flow stability analysis, as the consequence of an important mean flow modification. We observe
for instance that, while the base flow has two recirculation bubbles at Re = 300, the mean flow has only a single small
bubble.
In a second step, we observe the onset of chaos for Re ∼ 220 through a Ruelle-Takens route. The flow becomes first
quasi-periodic with two different non commensurable frequencies, until they become sufficiently close for nonlinearities
to destructure the T2 torus. The chaotic nature of the flow is confirmed by phase-map cross-sections as well as sensitivity
to initial conditions.

Figure 1. Base flow (a) and its spectrum (b) for the helical mode m = 1 at Re=300. Mean flow (d) and its spectrum (d) for the same
parameters. In (a) and (d), the upper part shows the tangential velocity component and the lower part the streamsurfaces colored by the
magnitude of the axial velocity component.
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LINEAR STABILITY OF MEAN FLOWS AND FREQUENCY PREDICTION

Yacine Bengana1 & Laurette Tuckerman1
1 Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, PSL

Research University, 10 rue Vauquelin, Paris, France; Sorbonne Université, Univ. Paris Diderot.

The frequency of the von Kármán vortex street can be predicted by linear stability analysis around its mean flow. Barkley
[1] has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency
This property was named RZIF by Turton et al. [2]; moreover they found that the traveling waves (TW) of thermosolutal
convection have the RZIF property as shown in Figure (1). They explained this as a consequence of the fact that the
temporal Fourier spectrum consists primarily of the mean flow and first harmonic. From this same idea Mantič-Lugo et
al. [3] developed the Self-Consistent Model (SCM)

0 = LŪ + N (Ū , Ū) + N (u1, u
∗
1) (1a)

(σ + iω)u1 = LŪu1 (1b)
‖u1‖ = A, σ = 0 (1c)

for the base flow Ū , the complex eigenvector u1 and eigenvalue σ + iω, and its amplitude A. Mantič-Lugo et al. [3]
solved these equations iteratively for the cylinder wake for each value of A by determining Ū via Newton’s method from
(1a), then determining u1 and σ + iω via diagonalization of (1b), and finally choosing the value of A such that σ = 0.
We have carried out the same calculation for the traveling waves of thermosolutal convection, but we were able to obtain
convergence of this procedure only up to r = 2.25. We then implemented a full Newton’s method to solve the coupled
problem (1) up to at least r = 3. Figure 1 shows that while the RZIF property is satisfied up to at least r = 3, the SCM
model reproduces the exact frequency only for r < 2.1 and deviates entirely from it for r > 2.5. Thus, the nonlinear
interaction of u1 with itself yields a mean flow which is insufficiently accurate. Our next step will be to take into account
higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.
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Figure 1. Growth rate (a) and frequency (b) as a function of Rayleigh number r for TW branch of thermosolutal convection. Lineariza-
tion about the mean field yields eigenvalues (black filled circles) whose real part is close to zero and whose imaginary part is close to
the exact nonlinear frequency (hollow red circles), i.e. the RZIF property is satisfied over the range shown. The Self-Consistent Model
yields eigenvalues (green diamonds) whose real part is zero by construction, but whose imaginary part is close to the exact nonlinear
frequency only for small r. The eigenvalues obtained by linearization about the conductive state are shown as blue stars.
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SOLITARY TURBULENT STRIPES IN CHANNEL FLOW
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In subcritical fluid flows such as channels, pipes and boundary layers, the way turbulence manifests itself at the lowest
possible flow rates has been a long-standing question. A new experimental disturbance technique applied to plane channel
flow makes it possible to sustain turbulent flow at much lower values of the Reynolds number Re than previously thought.
We demonstrate that these perturbations take the form of isolated stripes of turbulence oblique with respect to the flow. The
angle of these stripes, however, is not determined by the Reynolds number Re only, but follows a statistical distribution
[1]. In order to understand this multiplicity of angles, we use a deterministic approach in terms of unstable solutions
of the Navier-Stokes equations in a slanted periodic domain, where the angle becomes one of the control parameters
[2]. Edge states in the form of localised travelling waves, and their subsequent bifurcations, act as a scaffold for the
turbulent dynamics down to very low values of Re consistent with the experimental thresholds. The non-uniqueness
of these nonlinear waves in terms of angle provides a new theoretical framework for the rise in complexity observed
experimentally as Re increases. The underlying angle selection process is fully nonlinear, and displays radical differences
with the classical selection processes in linearly unstable pattern-forming systems [3].

Figure 1. Experimental realisation of growing turbulent stripes at Re=750 based on the centreline velocity, as time goes by (flow from
left to right).
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INVARIANT SOLUTIONS OF TURBULENT-LAMINAR STRIPES IN PLANE COUETTE FLOW
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A common feature of transitional turbulence in extended shear flows is the spatial coexistence of turbulent and laminar
regions. For a range of transitional Reynolds numbers Re, the coexisting regions can spontaneously form a robust pattern
of large scale order, known as turbulent-laminar stripes or bands [1]. The preferred orientation of these stripes is oblique,
i.e. the pattern is tilted by angle θ relative to the direction of the base flow, and the selected wavelength λ is large compared
to the local turbulent structures. The phenomenon of stripes is known for 50 years and has been observed in different shear
flows but their emergence and dynamics remain not fully understood. Invariant solutions which represent the stripes could
help to better understand the pattern.
We study turbulent-laminar stripes in plane Couette flow (PCF) numerically in a double-periodic domain. Following
Barkley and Tuckerman [1], a base flow which is tilted by θ relative to the domain dimensions of suitable size allows
to simulate a single period of the pattern. We look for invariant solutions in a domain with tilted base flow using the
Channelflow-software [2] which is a pseudo-spectral code for direct numerical simulations (DNS) and for matrix-free
Newton and continuation methods.
A fully nonlinear equilibrium solution is presented which closely resembles the oblique stripe pattern in PCF at Reynolds
number Re = 350, angle θ = 24◦ and wavelength λ = 40 (Figure 1). The bifurcation sequence from the well studied
invariant solution of wavy streaks (NBCW) [3] to the new stripe equilibrium highlights the role of the streak phase for the
formation of the pattern.

Figure 1. Turbulent-laminar stripes from DNS (left) compared to the new fully nonlinear equilibrium solution (right). Contours are
kinetic energy and the total region in space is chosen to match Figure 1 of [1], as are the parameters Re = 350, θ = 24◦ and λ = 40.
The tiling of replicated DNS domains (white grid) host a single stripe period with Lz = λ. The displayed cross-section is not midplane
but at y = 0.5 to show the asymmetric fronts of the stripes.
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MODIFIED SNAKING IN PLANE COUETTE FLOW WITH WALL-NORMAL SUCTION
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Homoclinic snaking is a process by which a localized invariant solution grows additional structures at its fronts while
undergoing a sequence of saddle-node bifurcations [1]. In shear flows, the first set of snaking solutions is found in
plane Couette flow. They consist of two travelling wave branches which live in a shift-reflect symmetry subspace and
two equilibria which live in a central symmetry subspace [2]. These solutions are connected by multiple non-symmetric
solutions, also called “rungs”, which connect the two symmetry subspaces. The travelling waves and the equlibria together
with the non-symmetric solutions form a characteristic snakes-and-ladders bifurcation structure. The homoclinic snaking
process is similarly observed in simpler pattern forming systems such as the 1D with 3-5 nonlinearity Swift-Honenberg
equation [3]. A key feature of both systems is the symmetries of the snaking branches so that one snaking branch retains
an odd symmetry and the other one retains an even symmetry and the two are connected by non-symmetric branches.
We look at the robustness of the snaking process under a smooth change of boundary conditions to a new system, which
is applying suction into the bottom plate and increasing it smoothly. Finally, this leads to the asymptotic suction boundary
layer flow which is an streamwise-invariant boundary layer flow. Applying suction on plane Couette flow breaks the up-
down symmetry of the system and as a result the central symmetry. We show that the suction turns the snaking solutions
of plane Couette flow into a modified snakes-and-ladders formed by two separate snaking branches of travelling waves
which are connected by non-symmetric branches formed by what remains from the rungs and pieces of the equilibrium
branches.

Figure 1. The traveling waves and the connecting states, in plane Couette flow with a suction of Vs = 2e − 4 wall speed units into
the lower plate. The right panels show the velocity profiles on the midplane of the numerical cell at the points labeled in the left panel.
The suction breaks the up-down symmetry and turns the snakes-and-ladders structure of the travelling waves and the equlibria into a
modified snakes-and-ladders structure of travelling waves and connections between them.
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In recent years, canonical flows have been analysed from the dynamical system point of view to gain more insight into the
transition to turbulence processes. Numerous examples can be found in literature, ranging from pipe flows to plane flows
and boundary layers. Phase-space diagrams have been drawn identifying nontrivial solutions and classifying them along
the bifurcation branches [3, 5].

In this contribution, we focus on Couette flows. We start from the periodic, lower-branch solution found by [4] in a
minimal box with horizontal ratio Lx/Lz = 1.458. We explore the entire lower-branch, ranging from Re ≈ 236,
identified as the minimal Reynolds for which such a solution exists, to Re = 400. By applying the Floquet analysis [1],
we calculate the Floquet multipliers and examine the most unstable modes and the related adjoint modes of the identified
solutions. Through this analysis, the sensitivity of the unstable periodic orbits to structural perturbations is investigated,
based on the framework by [2]. Finally, we consider the nonlinear sensitivity analysis with respect of limit-cycle frequency
and the amplitude to feedback forcing, using the formulation introduced by [6] and further extended in [7].

The structural sensitivity analysis, based on the linear perturbations and computed over the orbit period, shows that the
core of the instabilities coincides with the regions where the streaks are bent. Interestingly, preliminary results for the
nonlinear sensitivity analysis reveal that the regions of the flow where the sensitivity is higher with respect of feedback
forcings are localized where the velocity of the shear flow is higher. In practice, while the structural sensitivity is higher
in the centre of channel at y/H = 0, the sensitivity to feedback forcings with respect of the limit cycle frequency and
amplitude shows that the flow is more sensitive in vicinity of the walls. Based on these observations, the final goal of the
investigation will be to provide indications on how to alter the self-sustaining mechanisms of the analysed flows.
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The understanding of transitional and turbulent flows has been recently boosted by the discovery of exact invariant solu-
tions of the Navier-Stokes equations, which can be equilibria, travelling waves, periodic orbits or chaotic solutions having
a few unstable directions. With the improvement of the computational resources, it has been possible to compute an
increasing number of these non-linear invariant solutions, which support the dynamics in the transitional and turbulent
regimes [3]. Many investigations have shown how the flow spends a relevant amount of time wondering in the vicinity of
one of these invariant solutions before escaping towards another [5]. The dynamics may shadow heteroclinic connections
between different exact coherent states [4].
The aim of this work is to construct dynamically relevant heteroclinic connections. A new algorithm based on a non-
linear adjoint optimization method [1] has been developed to detect several new heteroclinic connections between highly
unstable equilibria. Our method computes trajectories which start in the neighbourhood of an initial equilibrium uECSout

(E0 = ||u(0) − uECSout
||22 = 10−6 in this work) and end in the neighbourhood of a target equilibrium uECSin

in a
finite interval of time T . Thus, the method aims at finding the time T and the initial state u(0) that minimize the distance
||u(T ) − uECSin ||2. The algorithm, which has been implemented in the channelflow code [2], stops when this distance
reaches a value lower than a chosen threshold.
In order to validate the method, we compute three of the existing heteroclinic connections in plane Couette flow at
Re = 400 [4] and we found six previously unknown (see figure 1) using the available solutions on the database [2] (where
nomenclature has been taken from).
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Figure 1. Left: Visualization of the nine heteroclinic connections by projecting the trajectory onto the energy input I and the dissipation
rate D plane, normalized by their value in laminar flow. Right: Plots of distances of the velocity field u(t) to the target equilibrium
uECSin along the computed heteroclinic connections versus time. This plot represents the convergence of the computed heteroclinic
connections. The dashed line indicate the highest residual value for the heteroclinic connections computed in [4].
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Transition to turbulence in shear flows is a subcritical phenomenon, which relies on nonlinear mechanisms, possibly
exploiting transient disturbance energy amplification. Recently, an approach to identify initial disturbances of finite am-
plitude capable to optimally initiate the transition process has been proposed, relying on nonlinear optimization algorithms
(see [1, 2] for a review). However, since these methods rely on the optimisation of the full (three-dimensional) flow field,
they are computationally too expensive to allow a complete exploration of the parameter space. For this reason, in this
work we propose a weakly nonlinear optimisation, able to identify the couple of oblique waves capable of optimally trig-
gering transition to turbulence in a plane shear flow. Towards this aim, we decompose the perturbation to the base flow in:
i) a pair of oblique waves of wavevector (α,±β) and amplitude ε; ii) a mean flow correction (0, 0) of amplitude ε2; iii) a
streamwise-independent streak/vortex of amplitude ε2 and wavevector (0, 2β), generated by first-generation non-linear in-
teractions of the previous. The optimisation aims at seeking the initial optimal oblique wave pairs of given amplitude ε and
wavenumbers (α,±β) inducing the maximum energy growth at a target time T , where the energy e(t) takes into account
the contribution of the oblique wave pairs, as well as of the mean flow correction and the streamwise streaks/vortices. The
induced energy gain with respect to (α,±β) is provided in figure 1 for ε = 0.00450 (left) and ε = 0.00518 (right). An
optimal oblique wave pair arises past a finite value of the amplitude, inducing energy peaks comparable to those typical
of the well-known lift-up mechanism [3]. Moreover, these energy peaks are found to exist in a very narrow wavenumber
range, demonstrating the strong selectivity of the identified mechanism. These oblique optimal perturbations are expected
to lead to rapid breakdown past a well defined threshold value of the disturbance amplitude. Direct numerical simulations
of the Navier-Stokes equations substantiate the weakly nonlinear results, providing thresholds for transition close to the
predictions of the weakly non-linear model. Finally, an investigation of the transition scenario initiated by these optimal
oblique perturbations is provided.

Figure 1. Iso-contours of the energy 2e11(T )/e11(0) in the α− β plane for the case of (left) ε = 0.00450 with maximum value equal
to 382 at (α, β)=(0.001,1.540) and (right) ε = 0.00518 with maximum value equal to 327 at (α, β)=(0.303,1.020).
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We have recently setup an experiment to study localized turbulent spots, surrounded by laminar flow, in the subcritical
transition to turbulence in confined shear flows.

It consists of a Couette-Poiseuille flow, i.e. of two parallel walls, one moving and the other fixed [1]. Since the turbulent
spots move with a velocity close to the mean velocity, which is zero in this setup, they can be measured for long duration
of time.

We study the evolution of spots, when a very controlled perturbation is introduced in the flow. We study dynamics of
growth and decay, eventually, of these structures.of these structures.

We also study the interactions between these structures during process of sustained turbulence. In particular we measured
the large-scale flow around isolated spots as well when they are organized in bands.

Figure 1. Left: turbulent band surrounded by laminar flow. Right: spanwise component of the large scale flow around the band
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The effect of wall roughness elements on laminar-turbulent transition in boundary-layer flows has recently been the focus
of many investigations. Despite their stabilizing effect on TS waves, in certain flow conditions they can induce bypass
transition, a detrimental effect for control purposes. In an effort to provide thresholds for transition, von Doenhoff &
Baslow [1] compiled a transition diagram correlating the roughness element’s aspect ratio to the roughness Reynolds
number, Reh, beyond which the induced flow would transition to turbulence. With the aim of providing a more accurate
estimate of the critical Reynolds number for transition, global stability analyses have been recently performed in the case
of a cylindrical roughness elements [2].

In this work, the onset of unsteadiness in a boundary-layer flow past a cylindrical roughness element of unitary aspect
ratio is investigated both experimentally and numerically at a subcritical Reynolds number. On the one hand, a shedding
of spanwise-symmetric hairpin vortices characterized by a pulsation ω ' 1.05 and a spatial wavelength λx ' 5 is
observed experimentally. On the other hand, global stability analyses have revealed the existence of a varicose isolated
mode, as well as of a sinuous one, both being linearly stable, whereas unsteadiness is observed during the experiments.
Nonetheless, the isolated varicose mode, characterized by a pulsation ω = 1.02 is highly sensitive, as ascertained by
pseudospectrum analysis (see Fig. 1). To investigate how this mode might influence the flow dynamics, an optimal
forcing analysis is performed [3]. The optimal response at ω = 1.02 consists of a spanwise-symmetric perturbation with
wavelength λx = 4.7 inducing dynamics similar to the ones observed experimentally. This indicates that the onset of
unsteadiness at subcritical Reynolds number can be due to quasi-resonance of such a varicose global mode, explaining
the experimental observations.
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Figure 1. Eigenspectrum (colored symbols) and pseudospectrum (solid lines) of the linearised Navier-Stokes operator for (η;Re) =
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ROUGHNESS-DISTURBED LAMINAR BOUNDARY LAYER
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Roughness-induced boundary layer instabilities are investigated by means of hot-film anemometry in a water channel to
provide experimental evidence of a global instability. It is shown that the roughness wake dynamics depends on extrinsic
disturbances (amplifier) at subcritical Reynolds numbers whereas intrinsic, self-sustained oscillations (wavemaker) are
suspected at supercritical Reynolds numbers. Further, the critical Reynolds number from recent theoretical results is suc-
cessfully confirmed in this experiment, supporting the physical relevance of a global instability. The critical Reynolds
number therefore separates between two fundamentally different instability mechanisms.

Figure 1 shows the distribution of root mean square (rms) of u′/Ue versus x and Rek. The dashed line indicates the begin-
ning of a region where the contours become more independent of Rek and show stronger velocity fluctuations downstream
of x = 30. The fluctuation upstream edge moves upstream with increasing Rek until it reaches the dashed line and then
remains constant at x = 4. These changes all occur at one distinct Reynolds number which we denote as the experimental
critical Reynolds number Rek,c,e. Most likely Rek,c,e = 556 separates the system dynamics into convective amplification
and intrinsic oscillation and is thus the value to be compared to the critical Reynolds number of 3-d global stability theory.
Such computations have recently been done [1] and these authors predicted a critical Reynolds number of Rek,c,t = 564
for exactly the same configuration. Despite the necessary but restricting assumptions of linear theory, there is very good
agreement to the highly nonlinear observations in this experiment. Together with a successful frequency comparison [2]
there is little doubt that the observed self-sustained oscillation originates from a linear global instability.

A similar comparison to an experiment has been done before, however, the theoretical critical Reynolds number has been
compared to the transition Reynolds number, which can in the worst case be misleading. In our presentation we will
discuss the problem that arises from such a comparison and provide a different experimental method.

Figure 1. Dimensionless root mean square of streamwise velocity fluctuations as a function of x and Rek.
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LINEAR STABILITY ANALYSIS OF ROTATING-CYLINDRICAL ROUGHNESS FLOW
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Roughness flow is characterised by an upstream and downstream reverse flow region, and thereupon resulting vortices
and shear systems. As found by recent study [1], the stability of flow with cylindrical roughness element is determined by
the shear systems stemming from the roughness. In this study, the vortices and shear systems are modified by rotating the
cylindrical roughness. Figure 1 shows vortices for comparison between static and rotating cylindrical roughness element.
For the rotating case, the two inner vortex legs become twisted over each other at the near wake region, and further
downstreams one of the inner vortices dominates. Like the modification of the base flow, the alteration of its instability
property persists in the pronounced vortex as well.

Figure 1: Vortices visualized by λ2 criterion for Reh = 1000. Left: static roughness, right: rotating cylindrical roughness
element with ω = 38. Shading indicates rotation sense.

Bi-global linear stability analysis is performed for a parametric study of rotating cylindrical roughness element. Figure
2 shows a comparison of leading modes between static and rotating cases for baseflow Reh = 1000 with aspect ratio
η = 1. For static cylindrical element, the leading mode is found to be asymmetric, while for rotating cases the mode
symmetry/asymmetry sense becomes ambiguous and even lost. The amplified vortex leg futher promotes the lateral low
spead streak and forms stronger vortex at higher rotation speed (ω = 67). A strong inflectional velocity profile is obvious
in the vortex region. As shown, the leading modes for rotating roughness are located around the promoted vortex leg.
The relocation of the leading modes can be ascribed to the redistribution of the shear system caused by this promoted
vortex. A pertubation kinetic energy analysis [2] reveals the physical stability mechanism. By rotating the roughness, the
wall-normal production is amplified while the dissipation is inhibited. However, at a certain position (roughly x/h = 60)
with rotation speed ω = 38, the spanwise production is negative, indicating a stabilizing effect.

In this study, the influence of cylindrical roughness rotation is analyzed with a parametric study of Reynolds number Re,
the aspect ratio of roughness η, and rotating speed ω. The stability mechanism is analyzed with bi-global linear stability
theory. The results could provide a new flow control method.

Figure 2: Leading modes of Reh = 1000, η = 1 at x/h = 40 with wave number α = 1.5. Left: static cylinder (ω = 0),
middle: rotating cylinder (ω = 38), right: rotating cylinder (ω = 67). Mode magnitude normalized with local maxima.
Solid lines are base-flow isolines.
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Inside a differentially heated, rotating annulus, the so-called baroclinic cavity, it is recognized that the transition to tur-
bulence occurs through the development of fluctuations, which are going to progressively destroy the regularity of the
large-scale flow ([1]). In liquid-filled cavities, direct numerical simulations have allowed to detect, simultaneously with
the baroclinic instability, the spontaneous emission of such fluctuations along the Stewartson boundary layers developing
towards the inner, cold, and outer, hot, vertical cylinders. As illustrated in figure 1, these small-scale structures exhibit very
different behaviours. The inner small-scale features have been identified as inertia-gravity waves from their dispersion
relation, while those located towards the outer wall have been found to result from centrifugal instability ([2]).
We present results from these simulations together with available experimental measurements in the laboratory using two
different liquids, and discuss the interaction between these fluctuations and the large-scale baroclinic waves during the
transition.

inner wall outer wall

Figure 1. Hovmöller diagrams in an azimuth-time slice showing the small-scale structures developing inside the baroclinic cavity.
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We experimentally investigated the transition to pattern formation, in an open cavity flow, resulting from centrifugal in-
stabilities. The steady inner-flow is characterized by a main recirculating flow driven by the shear layer from the cavity
top-plane. Centrifugal instabilities develop on the steady inner-flow at Reynolds numbers much lower than the onset
of shear-layer oscillations — the energetically dominant feature of the flow at higher Reynolds numbers. The result-
ing pattern is an allay of Taylor-like pairs of counter-rotating rings of vorticities, winding up around the main inner-flow
recirculation. A topview visualization of the pattern, in an horizontal cut of the flow seeded with smoke, is shown in Fig. 1.

Linear stability analyses, performed on two-dimensional steady base flows with respect to spanwise Fourier modes, pre-
dict families of modes against which the base flow can destabilize [1, 2, 3]. We realized a parametric experimental study
of the onset of instability in cavities of different depth D and different aspect ratio L/D, where L is the cavity length.
In geometries where the span ratio S/D is large enough (S being the cavity span), theory and experiment compare well
[4]. For small aspect ratios, L/D < 1.4, a family of (quasi)-steady modes is selected at onset, while travelling waves are
observed for larger aspect ratios, as expected from the linear growth rates predicted by the linear stability analyses of [3].
When the span ratio is smaller, typically S/D = 6, modes at onset are (quasi)-steady for all aspect ratios between 1 and 2.
In such a case, the effect of the spanwise boundaries cannot be neglected and linear stability analyses must be performed
on fully three-dimensional steady base flows [5].

Preliminary comparisons between experiment and fully three-dimensional linear stability analyses show good agreement.

Figure 1. Smoke visualisation of the pattern at onet (topview).
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Centrifugal forces are ubiquitous in nature and can have a tremendous impact on a large variety of physical systems,
ranging from astrophysical objects to man-made experimental devices. Typical examples are accretion disks and planetary
cores where the centrifugal forces can cause an instability of the system giving rise to spatial patterns strongly affecting
its dynamics. At human scale, these centrifugal forces can be found in granular or stratified flows between concentric
cylinders, in separated boundary layer flows, as well as in a number of confined flows such as the flow within a lid-driven
cavity [3, 1, 4].

The transition to unsteadiness of a realistic shear-driven cavity flow is investigated using the joint application of exper-
imental observations, direct numerical simulations and fully three-dimensional linear stability analyses. Supported by
experimental evidences and explained by linear stability theory, a clear understanding of the first two bifurcations oc-
curring in the flow will be given. As for its two-dimensional counterpart, the first bifurcation is characterized by the
emergence of Taylor-Görtler-like vortices resulting from a centrifugal instability of the primary vortex core. Further in-
creasing the Reynolds number eventually triggers self-sustained periodic oscillations of the flow in the vicinity of the
spanwise end-walls of the cavity. This secondary instability causes the emergence of a new set of Taylor-Görtler vor-
tices experiencing a spanwise drift directed towards the spanwise end-walls. While a two-dimensional stability analysis
would fail to capture this secondary instability due to the neglection of the lateral walls, it is the first to our knowledge
that this drifting of the vortices has been fully characterized by a three-dimensional linear stability analysis of the flow.
Good agreements with the experimental observations and measurements (see figure 1) strongly supports our claim that
the initial stages of transition to turbulence of three-dimensional shear-driven cavity flows are solely governed by modal
instabilities.

Figure 1. Experimental smoke visualization (left) [2] and numerically computed streamlines (right). The visualization tehcnique
enhances the detection of mushroom-like Taylor-Görtler vortical structures. Top-views in the y = 0.8 plane.
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The transition to three-dimensional flow in the wake of a circular cylinder has been extensively studied over the past 30
years [6]. It is currently understood that the flow undergoes a subcritical bifurcation to mode A at a Reynolds number
Re ' 190. The physical mechanism of instability appears to be a cooperative elliptic instability [4]. The wake vortices
that make up the Kármán vortex street are strained into an approximately elliptical shape in the near wake, triggering an
elliptic instability, causing the wake vortices to become wavy along the span of the cylinder with a wavelength around
four diameters. This is further amplified in the shear layers that connect these vortices.
Linear stability analysis predicts the onset Reynolds number and wavelength of mode A very accurately, via a mode that
is synchronous with the base flow [1]. However in reality, the onset of three-dimensional flow also marks the end of the
strict periodicity of the flow as the flow becomes chaotic (although the flow remains dominated by the vortex shedding
and can appear ordered for many vortex shedding cycles) [2].
The two-dimensional wake behind an elliptic cross section, or elliptic cylinder, is very similar to that behind a circular
cylinder, simply scaled down due to the more streamlined shape (when the long axis of the ellipse is aligned with the
flow). It might therefore be expected that the three-dimensional transition is also similar to the circular cylinder. Here, we
show that this is not the case.
We have conducted Floquet stability analysis of the elliptic cylinder wake, investigating the impact of the aspect ratio
of the ellipse [3]. We have found that for aspect ratios close to unity (i.e, cross sections close to circular) the transition
scenario is indeed similar to that of the circular cylinder. However, as the body becomes more streamlined, two modes
that are not present in the circular cylinder wake lead the transition to three-dimensionality (“lead” in the sense that
they become unstable at the lowest Reynolds number). The first of these, dubbed mode Â, appears to be due to similar
mechanisms to mode A, but with a much longer wavelength. The second, mode B̂, is significantly different in terms of
structure, wavelength and spatio-temporal symmetry. Three-dimensional DNS shows that of these two, mode Â plays the
largest role in the final saturated state, regardless of which leads the transition, an example of which is shown in figure 1.

Figure 1. The final saturated state of mode Â. Vortices are marked in blue by isosurfaces of the λ2 criterion. Flow is from left to right,
with the cylinder running from top to bottom of the image.
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The stability properties of fluid systems can be significantly altered by small variations of the base flow. This issue has
been investigated in detail in several studies: for example sensitivity analysis were carried out for parallel flows [1],
boundary layers [5] and bluff body wakes [2, 4, 3]. To the authors’ knowledge all sensitivity studies documented in
the literature are carried out for steady base flows. However, sensitivity analysis can be relevant also for configurations
characterised by a periodic base flow. For instance, the periodic wake arising behind bluff bodies due to vortex shedding
may undergo a secondary bifurcation which generally leads the system towards a more complex state. As an example, this
happens for the wake past a circular cylinder, which becomes unstable to 3D perturbations when the Reynolds number
exceeds the threshold Re2,c ≈ 189, and this treshold can be estimated by a Floquet stability analysis. In this work we
consider the sensivity analysis proposed in [4] and in [3] to study the effects of small localised structural perturbations
on the stability properties of the system, and we generalize it so as to include configurations characterised by a periodic
base flow. In particular, starting from a Floquet analysis of the linearised Navier Stokes equations and using a Largangian
approach it is possible to estimate the variation of a particular Floquet exponent (indicating the stability of the flow) caused
by a generic but localised structural perturbation of the base flow equations. This link is expressed in terms of adjoint
operators and the result is used to build spatial sensitivity maps as those reported in fig. 1. These maps identify the regions
of the flow where the placement of a infinitesimal small object produces the largest effect on the Floquet exponent. Such
analysis may provide useful insights both for passive control strategies or for experimental investigations. In this work
the proposed method is applied to the wake past a circular cylinder.
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Figure 1. Sensitivity of the Floquet exponent of mode A to the application of a localized force which is proportional to the local
velocity: (left figure) contribution due to the variation of the baseflow and (right figure) by the direct effect on the linearized flow
equations. The global effect is the sum of the two maps.
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LINEAR AND NON-LINEAR PERTURBATION ANALYSIS OF THE SYMMETRY-BREAKING IN
TIME-PERIODIC PROPULSIVE WAKES

Damien Jallas1, Olivier Marquet 1 & David Fabre 2

1ONERA, The French Aerospace Lab (DAAA), 92190 Meudon, France
2Université de Toulouse, INPT, UPS (IMFT), 31400 Toulouse, France

The deviation of the two-dimensional propulsive wake produced by a pitching foil [1] is investigated numerically by
varying the flapping frequencies f at a fixed chord-based Reynolds number (Re ∼ 1000) and flapping amplitude (A ∼ 1).
Three different regimes are observed when examining the evolution of time-averaged forces with increasing flapping
frequency. In the regime I, the wake is aligned with the upstream flow velocity (Fig. 1-a) and the time-averaged lift force
exerted by the flow on the foil is striclty equal to zero. In the regime II, the wake is weakly deviated (Fig. 1-b) and the
mean lift is positive/negative for upward/downward deviated wakes respectively. In the regime III, the wake is strongly
deviated (Fig. 1-c) and a large increase of both the mean lift and thrust is observed.

(a) (b) (c)

Figure 1. Vorticity snapshots of the time-periodic wake obtained for flapping frequency in (a) regime I (f = 0.35), (b) regime II
(f = 0.43) and (c) regime III (f = 0.45).

A Floquet stability analysis of the time-periodic wake is performed to analyze the transition between the regimes I and
II [2]. The base flow is the non-deviated time-periodic base flow satisfying the spatio-temporal symmetry characteristics
of the foil’s kinematics. For flapping frequency in regime I, it is trivially computed by marching in time the governing
equations. For flapping frequency in regimes II and III, a new method is designed to compute it, based on a splitting of the
flow field, as well as the governing equations, in two components that respect and break, respectively, the spatio-temporal
symmetry. A damping term is introduced into the equation governing the dynamics of the symmetric-breaking component,
so as to stabilize it without changing the dynamics of the symmetric component. Solving this system of coupled equations
allow to obtain a spatio-temporal symmetric solution of the Navier-Stokes equations, i.e. a non-deviated time-periodic
wake flow. The linear Floquet stability analysis of this time-periodic base flow show the existence of one real unstable
mode, which breaks the spatio-temporal symmetry. This mode becomes unstable for the same critical frequency where
the deviation occurs. It acts as an array of displacement modes [3] that provokes the deviation.
While the transition between regime I and II is explained by a linear stability analysis, the transition between the regimes
II and III occurs due to non-linear effects. Anti-symmetric perturbations that result of the linear destabilisation of the wake
produce and interact with perturbations that respect the spatio-temporal symmetry. These non-linear interactions between
the symmetric and anti-symmetric perturbations arise closer to the foil with increasing flapping frequencies. When the
non-linear effects are no longer negligeable in the vicinity of the foil, we observe the transition between the regimes II
and III, associated with the large deviation of the wake flow. The increase of symmetric and anti-symmetric perturbations
in the vicinity of the foil are responsible for the increase of mean thrust and lift respectively.
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DISTURBED FEEDBACK FLOW OF THE STATIC TURBULENT SYMMETRY BREAKING
MODE OF THE AHMED BODY

O. Cadot1,2, J.M. García de La Cruz2, R.D. Brackston2, G. Bonnavion1 & J.F. Morrison2
1IMSIA, ENSTA-ParisTech/CNRS/CEA/EDF, Université Paris Saclay, Palaiseau, France

2Department of Aeronautics, Imperial College London, London, UK

A secondary small body is placed inside the recirculation bubble of the static Symmetry Breaking mode (SB mode) of a 3D
squareback bluff body wake at Re=1.07×105. The apparatus sketched in the figures 1(a, b) allows angular displacements
of ±10◦ and radial displacements from 0.2H to 1.2H of the secondary body. This study is inspired from the stabilizing
effect found in [2] using a vertical cylinder with a length l equal to the body height H . Following the same procedure as
in [2], the energy of the asymmetry is estimated from the horizontal base pressure coefficient gradient:

A2
SB = (H

∂cp
∂y

)
2

The velocity field of the unforced SB mode is also shown in the figures 1(a, b). The strong permanent horizontal asym-
metry in figure 1(a) develops an amplitude ASB ' 0.15. The preliminary result using a vertical cylinder of length l = H
placed at positions (xc, yc) recovers satisfactorily the SB mode suppression region evidenced by [2], here marked by the
blue region in figure 1(c), but with a Reynolds number ten times larger than in [2]. A shorter cylinder with l = 0.75H
as set in figure 1(b) leads to the different sensitivity map shown in figure 1(d) with significantly less suppression around
the symmetry axis. The purpose of the talk will be to identify these most sensitive parts inside the separated region using
bodies at different vertical positions. The question of whether the SB mode is a shear layer instability, or one arising from
the internal flow within the recirculation region will be addressed to shed light on the nature of the instability. In addition,
the sensitivity study aims at improving the authority of actuators and their design for active flow control [1, 3].
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Figure 1. Top (a) and side (b) views of the squareback after body with the control cylinder placed at (xc, yc). Backgrounds in (a, b)
display the mean streamlines of the unforced wake (i.e. the SB mode). Sensitivity maps of ASB(xc, yc) for the long, H = l cylinder
(c) and the short, H = 0.75l cylinder (d).
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WAKE CONTROL OF D-SHAPED BODIES THROUGH OPTIMIZED REAR CAVITIES
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1Departamento de Ingeniería Mecánica y Minera. Universidad de Jaén. Campus de las Lagunillas, 23071,
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We have investigated the use of the adjoint sensitivity formulation to design efficient passive control strategies aiming at
reducing the drag coefficient of a slender blunt-based body with a straight rear cavity. In particular, a technique consisting
in wake modifications generated by shape optimization of a cavity placed at the base of the body, has been evaluated
numerically. Thus, we have computed the turbulent flow sensitivity of the drag coefficient to localized forcing for a two-
dimensional body with a straight cavity at Re = ρU∞H/µ = 2000, where U∞ is the free-stream velocity, ρ and µ the
fluid density and viscosity respectively and H the body height, showing that the highest values of sensitivity are obtained
near the rear massive separation point. The drag shape sensitivity on the body surface [1], computed using the linear
adjoint formulation, has been used in combination with a free-form deformation algorithm [2], to guide the local structure
deformations of the cavity, providing progressive drag reductions until the optimal, curved, shape is achieved. To deeply
analyze the physical mechanisms behind the drag reduction provided by the optimal cavity, we have also performed more
realistic three-dimensional numerical simulations using an IDDES model at two different Reynolds numbers, Re = 2000
and 20000. The results corroborate sensitivity analysis, obtaining a total drag reduction of 25.6% atRe = 2000 and 43.9%
at Re = 20000, with respect to the original body without cavity, and 21.7% at Re = 2000 and 29.6% at Re = 20000
additional reduction with respect to the body with a straight cavity. These reductions are mainly achieved by the inwards
deflection of the flow upon detachment and a flow deceleration at the trailing edge due to an adverse pressure gradient
introduced by the curved shape of the optimal cavity walls. Both combined effects modify the near wake formed behind
the body, increasing the base pressure, and consequently, decreasing the drag. Furthermore, the addition of an optimized
base cavity reduces the amplitude of velocity fluctuations behind the body and stabilizes the wake, which becomes less
chaotic and more two-dimensional, as observed in Fig. 1.

2

c)
wz

Figure 1. Contours of static pressure in the wake (p∗ = −0.36), colored by spanwise vorticity: (a) original body without cavity, (b)
body with straight cavity, and (c) body with the optimized curved cavity.
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SYMMETRY BREAKING IN 3D BLUFF-BODY WAKES

Georgios Rigas1, Lucas Esclapez2 & Luca Magri3
1California Institute of Technology, Pasadena, CA, USA

2CERFACS, Toulouse, France
3University of Cambridge, Cambridge, UK

The dynamics of a three-dimensional axisymmetric bluff-body wake are examined at low Reynolds regimes where tran-
sitions take place through spatio-temporal symmetry breaking. A linear stability analysis is employed to identify the
critical Reynolds numbers associated with symmetry breaking, and the associated eigenmodes, known as global modes.
The analysis shows that the axisymmetric stable base flow breaks the rotational symmetry through a pitchfork m = 1
bifurcation, in agreement with previously reported results for axisymmetric wakes. Above this threshold, the stable base
flow is steady and three-dimensional with planar symmetry. A three-dimensional global stability analysis around the
steady reflectionally symmetric base flow, assuming no homogeneous directions, predicts accurately the Hopf bifurcation
threshold, which leads to asymmetric vortex shedding. DNS simulations validate the stability results and characterize the
flow topology during the early chaotic regime [2, 1].
For Re > 900 chaotic behavior is established. The wake breaks the reflectional symmetry and random reorientations in
the azimuthal direction occur. Interestingly, the laminar symmetry-breaking instabilities persist even at high Reynolds
numbers [4, 3] and manifest as coherent large-scale structures. This is shown based on experimental results of the same
bluff body geometry at ReD ≈ 200, 000. A stochastic framework for the modelling of the large-scale symmetry breaking
coherent structures is proposed and validated against the experimental measurements.
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Figure 1. DNS simulations (left) and growth rates of the globally unstable modes (right). Growth rates were predicted from global
stability analysis with 2 inhomogeneous directions (2D) and 3 inhomogeneous directions (3D). Streamwise vorticity contours, ω∗
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±0.05, in the wake of the bluff-body; side (left-top) and plane (left-bottom) views.
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SOMETHING OLD, SOMETHING NEW IN TRANSITION AND INSTABILITY

Dwight Barkley1
1Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

I will begin by discussing subcritical transition in the context of directed percolation. I will briefly review the basic
features of spatiotemporal transition, and then focus on recent successes in obtaining critical exponents in experiments
and numerical simulations. I will discuss the difficulties of such studies and the challenges for the future. I will then turn
to low-viscosity flows in cylindrical geometries and discuss the interesting mathematics and physics of certain types of
highly nonlinear solutions.
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ENERGY PRODUCTION AND SELF-SUSTAINED TURBULENCE AT THE KOLMOGOROV
MICROSCALE

Qiang Yang1,3, Ashley P. Willis 2 & Yongyun Hwang1
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2School of Mathematics and Statistics, University of Sheffield, S3 7RH, UK
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Several recent studies have reported that there exists a self-similar form of invariant solutions in the form of a station-

ary/traveling wave down to the Kolmogorov microscale in the bulk region of Couette flow [1, 2, 3]. While their role in a

fully-developed turbulent flow is yet to be identified, in this talk, we report a related mechanism of turbulence production

at the Kolmogorov microscale in the bulk region of turbulent Couette flow. A set of minimal-span direct numerical simula-

tions are performed up to friction Reynolds number Reτ ≃ 800 (see figure 1). It is found that this production mechanism

essentially originates from the non-zero mean shear in the bulk region of the Couette flow and that the associated eddy

turn-over dynamics in the core region of the Couette flow is remarkably similar to the so-called self-sustaining process

(SSP), involving amplification of streaks, their subsequent breakdown via an instability, and regeneration of streamwise

vortices. A numerical experiment that removes all the other motions except in the core region is also performed, which

demonstrates that the eddies at a given wall-normal location in the bulk region are sustained in the absence of other

motions at different wall-normal locations. It is proposed that the self-sustaining eddies at the Kolmogorov microscale

correspond to those in uniform shear turbulence at transitional Reynolds numbers, and a quantitative comparison between

the eddies in uniform shear and near-wall turbulence is subsequently made. Finally, it is shown that the turbulence pro-

duction by the self-sustaining eddies at the Kolmogorov microscale is much smaller than that of full-scale simulations,

and that the difference between the two increases with Reynolds number.

Figure 1. An instantaneous flow field of the minimal-span simulation of turbulent Couette flow at Reτ ≃ 814. Here, the blue

iso-surfaces indicate u
′∗

= −2, while the red ones are v
′∗

= 1.5. Here the superscript ∗ denotes dimensionless variables with the

Kolmogorov microscale.
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UNIVERSAL CONTINUOUS TRANSITION TO TURBULENCE IN A PLANAR SHEAR FLOW
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Classifying the transition to turbulence in planar shear flows is a long-standing question without a definitive answer
[1, 2, 3, 4]. More specifically, the question is one of continuous or discontinuous transition, whether an arbitrarily small
turbulence fraction can be maintained in the long-time limit. To attack this problem, either in simulations or experiments,
requires domains that are large relative to the building blocks of transition, turbulent spots and bands. The combination
of large domains and long time integration results in a computational burden too large for 3D DNS. Instead we consider
the problem in Waleffe flow – the planar shear flow between stress-free boundaries driven by a sinusoidal body force.
Using a low-order truncation in the wall-normal direction we can reduced the costs and consider system sizes an order of
magnitude larger than any previously simulated. Despite this truncation, the building blocks of spots and bands are still
robustly created .
In this system we demonstrate a continuously increasing turbulence fraction as Reynolds number is increased beyond a
critical Reynolds number. The statistics of turbulence near criticality show the hallmarks of (2+1)D directed percolation.
By reconsidering the domain sizes used in previous experiments and simulations we see that their discontinuous transitions
result from insufficiently large domains or insufficiently long time integrations. Our results provide a guide to the work
required to confirm plane Couette flow in the universality class of directed percolation.
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Figure 1. Bifurcation diagrams for the transition to turbulence. (a) Continuous transition in a large domain. Equilibrium turbulence
fraction Ft is plotted as a function of Re. Points and errorbars denote mean and standard deviation of Ft. Black dashed curved shows
the directed percolation power law. (b) Log-log plot of the same data in terms of ε = (Re− Rec) /Rec, where Rec = 173.80. Near
criticality the data is consistent with Ft ∼ εβ with β ' 0.583. (c) F 1/β against Re showing linear behaviour. The dashed curve is the
directed-percolation power law from the large domain. (d) Streamwise velocity at the midplane for Re just above Rec in our simulation
domain [2560h, 1.25h, 2560h].
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FROM TURBULENCE TRANSITION TO SHELL BUCKLING - WHAT LOAD CAN A CYLINDER
SHELL CARRY?
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Natural and engineered structures ranging from egg shells to air- and spacecrafts are built from curved thin elastic shells
offering exceptional structural rigidity at minimal weight. How much load can such a shell carry before it buckles and
collapses? This classical problem has not been fully resolved even for the simple geometry of an axially compressed
cylinder shell. Predictions based on linear theory fail to capture experiments indicating buckling to occur well before the
unbuckled state looses linear stability. We will argue that the buckling transition can be described as a finite amplitude
instability similar to the transition to turbulence in linearly stable flows. Consequently the dynamical systems concepts
and methods that revolutionized our understanding of transitional turbulence in recent years carry over to shell elasticity.

Figure 1. Unstable force equilibrium for an axially loaded cylinder of length L = 1.6R. The solutions represented by their normal
deflection w in units of the shell thickness t are located on the stability boundary of the unbuckled base state. Under continuation in
axial load λ the edge state (single dimple) undergoes homoclinic snaking, creating multi-dimple configurations.

We calculate fully nonlinear force equilibrium solutions of the loaded cylinder shell. The equilibrium solutions are dynam-
ically unstable and located on the stability boundary of the unbuckled state. A fully localized single dimple deformation
is identified as the edge state[1], the attractor for the dynamics restricted to the stability boundary. Under variation of
the axial load the single dimple undergoes homoclinic snaking[2] in the azimuthal direction, creating states with multiple
dimples arranged around the central circumference.[3]
Experiments suggest that the fully nonlinear solutions embedded in the stability boundary of the stable unbuckled state
define critical shape deformations that trigger buckling of the shell. The solutions may thus help explain when an axially
loaded cylinder shell collapses.

References

[1] T.M. Schneider, B. Eckhardt, amd J.A. Yorke. Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99:34502, 2007.
[2] E. Knobloch. Spatial Localization in Dissipative Systems. Annu. Rev. Cond. Mat. Phys. 6:325–359, 2015.
[3] T. Kreilos, and T.M. Schneider. Fully localized post-buckling states of cylindrical shells under axial compression. in review, 2017.



EUROMECH SYMP. 591: 3-D INSTABILITY MECHANISMS IN TRANSITIONAL AND TURBULENT FLOWS, 18–20 SEP. 2017, BARI, IT

A SELF-SUSTAINING PROCESS THEORY FOR COUPLED UNIFORM MOMENTUM ZONES
AND VORTICAL FISSURES IN THE INERTIAL REGION OF TURBULENT WALL FLOWS

Greg Chini1,2, Brandon Montemuro2, Chris White1 & Joe Klewicki1
1Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 USA

2Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824 USA

Three-dimensional invariant solutions of the Navier–Stokes (NS) equations and the self-sustaining processes (SSPs) that
support them are now widely believed to play a fundamental role in wall flows at transitional Reynolds numbers. At
asymptotically large values of the friction Reynolds number Reτ , these solutions and the associated SSPs also may be
relevant to the near-wall dynamics of turbulent shear flows [1], where the effective Reynolds number is modest. Yet,
there is mounting evidence that much larger-scale quasi-coherent flow structures similarly exert a controlling influence on
momentum and vorticity transport away from the wall, i.e. in the inertial layer (outboard of the Reynolds stress peak),
where the effective Reynolds number is asymptotically large [2]. We investigate the possibility that these outer-region
‘super-structures’ are directly supported by a variant of the near-wall self-sustaining process operative in the inertial layer.
Specifically, we develop an asymptotic SSP theory [3] that has the potential to explain the origin and maintenance of
zones of quasi-uniform streamwise momentum (UMZs) and interlaced internal shear layers (or ‘vortical fissures’, VFs)
that comprise a characteristic structural feature of the inertial region of turbulent wall flows at sufficiently large Reτ [4].

Figure 1. The proposed SSP theory aims to explain the robust staircase-like structure of the instantaneous streamwise (x) velocity
(left panel, [4]) arising in the inertial layer of high-Reτ turbulent wall flows. Middle panels: Large-scale counter-rotating roll modes,
distributed in the wall-normal (y) direction, act as a homogenizing agent that creates and maintains uniform momentum zones (UMZs)
while simultaneously producing concentrated regions of spanwise vorticity (VFs). Owing to this homogenization, the fluctuations
(streamwise-varying fields) are largely irrotational within the UMZs, implying the roll modes are driven by nonlinear fluctuation
dynamics within critical layers (CLs) embedded within the fissures, yielding a 3-region wall-normal asymptotic structure (right panel).

The proposed mechanism and the corresponding asymptotic analysis have commonalities with, respectively, the SSP the-
ory developed by Waleffe [5] and the large Reynolds number asymptotic vortex–wave interaction (VWI) theory originally
developed by Hall and Smith and subsequently applied to invariant solutions of the NS equations by Hall & Sherwin [6],
but there are crucial distinctions. Firstly, we show that the streamwise-averaged roll motions, while remaining compara-
bly weak relative to the mean streaky streamwise flow, must have a magnitude � O(1/Reτ ) to locally homogenize the
streamwise flow. As shown in figure 1, a spanwise array of counter-rotating rolls, distributed in the wall-normal direction,
then can induce – and maintain against viscous disintegration – a staircase-like profile in the instantaneous streamwise
velocity, in accord with recent observations. Moreover, our asymptotic analysis highlights the active role played by the
internal shear layers, where the effective Reynolds number is O(1), even though viscous effects necessarily are weak over
the vast majority of the inertial domain. In contrast to the near-wall SSP, here it is the strong wall-normal rather than weak
spanwise inflections of the streamwise-averaged streamwise flow that are primarily responsible for the instabilities that
nonlinearly interact – within even finer critical layers (i.e. embedded within the VFs) – to sustain the roll and streak flow.
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EDGE STATES CONTROL DROPLET BREAK-UP IN UNIAXIAL EXTENSIONAL FLOWS
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When a droplet is placed in an extensional flow it elongates and can ultimately break, leading to the formation of smaller
droplets. The droplet elongation is related to the strength of the applied flow, which is represented by the capillary
number Ca. The seminal work from Taylor [1] shows that when the capillary number exceeds a critical value Cac, the
droplet always breaks. This phenomenon occurs because for Ca > Cac the steady solution disappears, as demonstrated
theoretically in [2]. When Ca < Cac, the evolution of the droplet depends on its initial shape. Indeed, it has been
shown experimentally [3] that an initially very elongated droplet can break up even for a subcritical capillary number. The
influence of the droplet stability upon the initial deformation denotes the existence of a finite basin of attraction of the
steady solution. In this work we investigate the stability of droplets for subcritical capillary number. For this purpose we
characterize the boundaries of the basin of attraction, separating droplets that break from those that return to the steady
state. We adapt the edge tracking technique developed to study shear flows [4] to our system. Thereby, we find the
edge state, which is an unstable equilibrium configuration whose stable manifold forms the basin boundary. In figure 1a
we show that starting from the edge state computed at Ca = 0.07, we can perform pseudo arc-length continuation in
capillary number until we join the branch of the steady states observed in experiments. The two branches join in a saddle
node bifurcation at Ca = Cac. The edge tracking and the continuation method are based on a spectral boundary integral
method solver. In figure 1b we show the time evolution for two families of a shape A and B, projected on the second and
fourth coefficient of a Legendre series. In all cases the droplet first approaches the edge state and than converges to the
steady solution or breaks up through the edge pinching mechanism [5]. This shows that the edge state strongly affects the
transient dynamics of the droplet shape, selecting an almost unique path towards break-up.
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Figure 1. (a) Bifurcation diagram of the deformation parameter as a function of the capillary number. (b) Phase space for Ca = 0.07

of the second and fourth Legendre mode describing the droplet radius: all trajectories are first attracted to the edge state, than stable
trajectories (dashed) return to the stable steady state while the others develop instabilities that leads to pinch-off.
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In spite of a large number of theoretical, numerical and experimental studies in bypass transition to turbulence
of fully developed channel flows, less attention has been paid to the channel entrance flow [1]. This work aims at
describing different paths leading to turbulence for the entrance channel flow case where the flow is uniform upstream.
Due to the favorable pressure gradient, all velocity profiles are stable [3] and if transition to turbulence occurs, it
excludes the path through the exponentially growing Tollmien-Schlichting mode. Scenarii are therefore based on
secondary instability of streaks [4].

A linear global optimization is carried out consisting in searching for initial perturbations having the largest
energy growth for given times [2], for various streaks amplitudes. For sufficiently high amplitude of the streaks, global
optimal modes, both varicose and sinuous, that take the form of wavepackets, are amplified. We show that for short
optimization times, varicose wavepacket grows through a combination of the Orr and lift-up effects, whereas for larger
target times, both sinuous and varicose wavepackets (if exist) exhibit an instability mechanism driven by the presence
of inflection points in the streaky flow.

By means of direct numerical simulations, we show that the varicose wavepacket associated with short time opti-
mization of the streaky flow exhibits a subcritical behaviour leading to hairpin-like trains. Both varicose and sinuous
wavepackets resulting for larger time optimizations yield to a supercritical behaviour that give rise to arch-like patterns
and spanwise wavy motion of streaks, respectively. It is shown that for short and long time optimizations, the flow
becomes turbulent futher downstream, and is very similar to a fully developed wall tubulence, with the same wall
shear-stress for all cases (Reτ = 166). It is observed that in this regime, the outer part of the boundary layer is
dominated by arch-like structures, independently of the symmetry of the initial wavepacket.

(a) Spanwise component of the vorticity of the linear optimal
wavepacket at the initial time.

(b) Nonlinear evolution of the optimal wavepacket convected
along low-speed streaks. Isosurface of the λ2-criterion colored
by the spanwise component of the fluctuation of the velocity.

Figure 1: Optimal varicose wavepacket for short time optimization of the secondary instability of the streaks in the
channel entrance flow. The Reynolds number based on the channel half-height and the bulk velocity is Reh = 2500.
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The three-dimensional linearized optimal energy growth mechanism, in plane parallel shear flows, is re-examined 

in terms of the role of vortex stretching and the interplay between the spanwise vorticity and the planar divergent 

components. For high Reynolds numbers the structure of the optimal perturbations in Couette, Poiseuille and 

mixing-layer shear profiles is robust and resembles localized plane waves in regions where the background shear 

is large. The waves are tilted with the shear when the spanwise vorticity and the planar divergence fields are in 

(out of) phase when the background shear is positive (negative). A minimal model is derived to explain how this 

configuration enables simultaneous growth of the two fields, and how this mutual amplification affects the 

optimal energy growth. This perspective provides an understanding of the three-dimensional growth solely from 

the two-dimensional dynamics on the shear plane.  
 

 
Figure 1. Optimal energy growth for 2D and 3D perturbations on Couette plane parallel shear flows for Re = 5000. The 

different streamwise and spanwise wavenumbers (k,m) are selected to generate maximal non-modal growth. Solid 

curves indicate the energy growth evolution, E(t), from the initial optimal perturbations. Note that E3Dmax _ E2Dmax and 

t3Dmax > t2Dmax , where tmax is the time of maximal amplification over all times. The structure of the optimal perturbations 

at selected times is indicated by the contours of the spanwise vorticity q. For the 3D perturbations the planar divergent 

field d is superimposed and indicated by the solid (positive) and dashed (negative) contours. Note that in 2D, Emax is 

obtained when the eddies are aligned perpendicular to the shear, whereas in 3D it occurs when the eddies are tilted with 

the shear, and d and q are in (anti) phase when the mean shear is positive (negative). Furthermore, the structures 

resemble localized plane waves that are tilted with the local maximal shear. Similar results are obtained for Poiseuille 

and mixing layer shear flows.   
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NON-LINEAR OPTIMAL PERTURBATION IN SINGLE AND DOUBLE VORTEX SYSTEMS
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Optimal perturbation in fluid systems has received significant attention owing to its application in the study of flow

transition, mixing and heat transfer. In general, it corresponds to an initial disturbance, with respect to a base state, that

optimizes certain flow attributes for a given horizon time (T ). The investigation of optimal perturbation in fluid systems

has been carried out almost exclusively within the linear framework. In the present work, we demonstrate that for vortex

flows the inclusion of non-linear terms in the governing equations can result in higher gain than that predicted by linear

analysis. This behaviour is expected to be significant in understanding the route to turbulence in such flows.

We consider the case of an isolated vortex first. The base flow consists of a Lamb-Oseen vortex. The Reynolds number

based on the circulation (Γ) of the vortex is Re = 5000. Time is non-dimensionalized using the rotation time of the

vortex (4π2a2/Γ), where a is the dispersion radius of the vortex. The objective is to find the initial perturbation that

maximizes the gain of kinetic energy (E) of the perturbation over T . To this end, the method of Lagrange Multipliers is

employed. The Langrangian consists of the objective function (E(T )/E(0)) constrained by the incompressible Navier-

Stokes equations and the corresponding boundary conditions. The direct and adjoint equations are solved iteratively to

converge to the optimal solution. The computations are carried out using the spectral element solver NEK5000. Figure 1

shows the variation of gain with E(0) for T = 4.8. In general, the value of gain obtained via non-linear analysis is lower

than the linear optimal gain. However, there exists a range of E(0) for which the non-linear gain is higher than the linear

gain. In this regime, the vorticity field corresponding to the non-linear optimal perturbation is less diffused than that of the

linear optimal perturbation. With increase in horizon time, the difference between non-linear and linear optimal gain is

found to increase. To compare the effect of the linear and non-linear optimal perturbation on vortex dynamics, direct time

integration (DTI) of the governing equations is carried out utilizing each as the initial perturbation. The results show that

if DTI is initiated with linear optimal perturbation, the vortex oscillates for short time. If, on the other hand, computations

are initiated with the non-linear optimal, the oscillations in the vortex persist for a long time and exhibit a quasi-periodic

behaviour.

Next, we investigate non-linear optimal perturbation in a two-vortex system consisting of counter-rotating vortices of

equal strength. The Reynolds number based on the circulation (Γ) is Re = 1000. The aspect ratio of the vortex pair is

a/b = 0.18; a is the dispersion radius of a vortex in the pair and b is the distance between the vortex centres. Figure 2

shows the variation of gain with initial energy of the perturbation for T = 0.5. Time is non-dimensionalized by (2πb2)/Γ.

Similar to the single vortex system, there exists a range of E(0) for which the non-linear optimal perturbation results in

higher gain than the linear optimal perturbation. The structure of the non-linear optimal perturbation exhibits asymmetry

about the mid-plane; the perturbations are dominant in one vortex of the pair. DTI of the governing equations initiated

with the non-linear optimal perturbation shows significant differences in the evolution of the two vortices in the pair; the

one with dominant perturbation exhibits oscillation of the vortex centre similar to that observed in the case of an isolated

vortex.
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Figure 1. Optimal perturbation in single vortex system for
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ONE-WAY NAVIER-STOKES EQUATIONS: OPTIMAL DISTURBANCES
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Optimal modes describing the fluctuating hydrodynamic and acoustic fields of slowly-varying flows are obtained in a
computationally efficient way by spatially marching the linearized One-Way Navier-Stokes (OWNS) equations [3, 2].
An adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and
optimal volumetric forcing that maximize the energy of the fluctuating field by iteratively space-marching the direct and
adjoint OWNS equations. The resulting optimal OWNS response modes are validated against modes obtained in terms of
global resolvent analysis by performing a singular value decomposition of the discretized global resolvent operator.
The above framework is demonstrated by performing a linear analysis of the mean flow of a turbulent Mach 1.5 high
Reynolds number jet in order to predict large-scale wavepacket structures and their acoustic radiation. Two scenarios
are considered in the present analysis. In the first case, no restriction is applied to the spatial forcing distribution. In
the second scenario, the forcing is restricted to the nozzle exit plane. The resulting optimal and suboptimal modes are
compared to spectral proper orthogonal modes obtained from a high-fidelity large eddy simulation[1]. For the supersonic
jet examined here, we show that volumetric and inlet-restricted forcing produce the same optimal modal shape for the
perturbation field in the frequency range dominated by the spatially unstable Kelvin-Helmholtz (K-H) mechanism. For
this regime, the optimal forcing is localized in a region close to the nozzle exit and the local K-H mode approximates to a
reasonable extent the optimal boundary condition. The optimal response modes are in good agreement with the frequency
POD modes extracted from the LES data for both the hydrodynamic and acoustic fields. Good agreement is obtained
also for suboptimal modes when compared against the second most energetic POD modes. Although the suboptimal
modes at the K-H frequency range have a less pronounced role in terms of amplification, for very low frequencies they
dominate the flow response. This explains the failure of Parabolized Stability Equations to capture the flow patterns at
low frequencies, since they are typically initialized with the K-H eigenmode. Our findings suggest that, instead of a single
spatially unstable mode, a family of spatially stable modes with distributed spatial forcing are responsible for the flow
pattern at these frequencies. These modes can be efficiently modeled using optimal OWNS equations, which provide an
an efficient framework for capturing modal and non-modal instabilities.

Optimal response Optimal forcing

Figure 1. Optimal response modes (left) and volumetric forcing (right) obtained from optimal OWNS equations (top) and global
resolvent analysis (bottom). OWNS modes are obtained in a computationally efficient way by iteratively space-marching the OWNS
equations. Pressure perturbation field (real part) for frequency St = 0.2 with azimuthal wavenumber m = 0 for a turbulent Mach 1.5
jet.
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EXPERIMENTS WITH DISTURBANCES ON THE FLOW THROUGH A SUDDEN EXPANSION IN
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The study of transition to turbulence in pipe flow with a sudden expansion has been less studied than the uniform pipe
case. Recently, Selvam et al. [1] have shown that the circular pipe flow with an expansion is sensitive to the disturbance
at the inlet and can initiate localised turbulence. Specifically the most energetic modes are located in the center of the
pipe, instead of near the wall. This imply that the mechanism leading to the transition to turbulence differs from the one
in uniform pipe flow. To experimentally characterise the transition to turbulence, an experimental set-up was design (see
figure 1(a)). The flow rate is controlled by valves, allowing an accurate selection of the Reynolds number. The novelty
here is the possibility of injecting controlled perturbation five diameters before the expansion in the inlet pipe. Two types
of perturbations are investigated: (i) a constant flow jet and (ii) a synthetic jet actuator. At low Reynolds number, a
recirculation area (see figure 1(b)) develops at the expansion [2] and interacts with the main flow. This kind of interaction
has been study in the case of plane expansion [3] or backward-facing step [4], but a complete experimental investigation
is still needed in the circular case. The governing parameters of disturbances are:

• Vr = Uj/U the ratio of jet velocity Uj and inlet bulk velocity U

• St = fd/U the Strouhal number, based on the pipe inlet diameter d and the actuator frequency f

The present study aims at characterising the effect of disturbances using flow visualization and PIV measurements. An
example of a spatio-temporal diagram of flow visualisation is provided in figure 1(b), where the injection of a constant
cross-flow jet initiates localised turbulence. Once the injection is stopped, the flow become laminar again. The lifetime
and length of the turbulent patch will be compared with numerical simulations in order to have a better understanding of
the transition to turbulence in the flow through a sudden expansion in a circular pipe.

(a)

Re = 60

(b)

0

perturbed flow
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Figure 1. (a) Sketch of the expansion pipe setup. (b) Long-exposure photography of the recirculation region for Re = 60 and the axial
recirculation length as a function of Re. (c) Spatio-temporal diagram taken at the center of the pipe for a constant flow jet disturbance
at Re = 900 and Vr = 0.42. The disturbance is injected up to t = 90 s.
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PASSIVE TRANSITION CONTROL IN SUPERHYDROPHOBIC CHANNEL FLOW
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SUPERHYDROPHOBIC SURFACES (SHS) are known to relief friction-drag due to the no-slip wall boundary condition.
Under certain conditions gas bubbles can be trapped within SHS’s micro-sculpture, resulting in a lubricating gas matress
onto which a flow can be sustained. Our aim is to investigate if such bio-mimetic surfaces can be engineered in order to
obtain a form of PASSIVE CONTROL capable of delaying transition and reduce drag in a shear-dominated configuration,
namely transitional channel flow.
Being still out of reach discretising both the micro and macroscopic scales at once, we have modeled SHS by using a Robin
(mixed Neumann-Dirichlet) boundary condition, therefore introducing a slip-length, which is a widespread solution in
literature[1]. SHS is therefore flat and inconditionally stable. It is known that both in laminar [2] and turbulent [3]
regimes SHS are capable of increasing critical Reynolds number and decreasing Reτ respectively by throttling the slip
length. On the other hand macroscopically homogeneous SHS have proven to be slightly affected by such gas lubricated
surface for slip length sitting in a experimentally observable range. Transition is generally characterised by the appearance
of spatially localized COHERENT STRUCTURES. Our gist is to warp these latter in order to control transition, by the
use of spatially inhomogeneous SuperHydrophobic Patches (SHP). We have chosen to focus on the K-type transition
scenario for Plane Poiseuille Flow (PPF) [4], since it is amongst the others the most influenced by near-wall structures
(Tollmien-Schlischting waves), hence more probably by our wall-confined passive control technique. It has been found
that, depending on the initial perturbation (IP)–SHP alignment, λ vortices can be stretched, shrinked nor annihiliate for a
given IP amplitude.
Despite the fact that both laminar and turbulent regimes are mildly affected, our preliminary results shows how transition
can be substantially advanced//retarded depending on the spatial localization of superhydrophobic patches.
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Figure 1. Detecting Transition with Reτ and visualizing warped hairpin onto SHP, λ2 = −0.005
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TRANSITION TO TURBULENCE IN A SUDDEN EXPANSION PIPE FLOW

Minh-Quan Nguyen1, Benoit Lebon 2, Mostafa Safdari-Shadloo 1,∗, Jorge Peixinho2, Abdellah Hadjadj1
1 CORIA-UMR 6614, Normandie University, CNRS-University and INSA of Rouen, 76000 Rouen, France

2Laboratoire Ondes et Milieux Complexes, CNRS and Université Le Havre Normandie, France

Flow in a sudden expansion pipe is a basic fluid mechanics problem that has both fundamental and practical interests. One
of the crucial issue in studying flow bifurcation and transition to turbulence in pipes is a gap of critical Reynolds number
predicted by simulations and the one found in experiments. This gap is believed to be caused by the imperfections that are
always present in the experiments. Beside the natural transition, which is difficult to predict, the simulations very often use
finite-amplitude forced perturbations to trigger the transition. Better understanding of this “forced" turbulence state could
help to understand the difference between experimental and numerical predictions. The recent numerical investigation of
Sanmiguel-Rojas & Mullin [2] shows the existence of a hysteresis cycle when varying the Reynolds number (Re = Ud/ν,
with d the inlet diameter, U the mean inlet velocity and ν the kinematic viscosity) around its critical value. The extent of
this hysteresis loop is surprisingly large (varying from Re = 1450 to 1850). The underlying mechanisms that govern the
transition are far from being completely understood, and the transition mechanism is extremely sensitive to the shape and
energy of the initial perturbation. Hence, one need to know how the transition occurs precisely and how long the system
stands before laminar or turbulent states occur. Also, the question of the existence or not of a hysteresis phenomenon must
be clearly answered. In this study, we further investigated this problem using a spectral element code (based on Nek5000
[1] solver) along with a vortex perturbation method with a given amplitude A. The simulation set-up is described in
[3]. We found that the turbulence state seems to be different while varying the two main parameters: Re and A. The
space-time diagrams, plotted below, show the signature of the different instabilities, that can be summarized as follow:

- Periodical burst that appear around 25 d after the expansion for Re = 1300 and A = 0.5.

- Steady production of turbulence around 15 d after the expansion for Re = 2000 and A = 0.2.

- Any change of physical parameters (Re or A) or numerical (order of time interpolation) will generate turbulence
(around 10 to 15 d after the expansion) that get carried downstream and decays: see figure 1(b) and 1(c).

- Under certain conditions, turbulence can be re-generated far downstream (around 50 d after the expansion) and at
later times: see space-time diagram in figure 1(c) at t = 1000 and the 3D flow structure in figure 1(a).

Full details, including the development of 3D instability structures along with the pattern of unstable modes, will be
presented during the colloquium.

t

z z

(a) Re = 1400, A = 0.2 (b) Re = 1300, A = 0.2 (c) Re = 1400, A = 0.2

Figure 1. (a)- Iso-contour of λ2 coloured by velocity magnitude. (b,c)- Spatio temporal diagram of the perturbed axial velocity:
vz(t) − vz(t = 0) for different Re and A. Here, t is the simulation time expressed in d/U and z the distance from the expansion
section expressed in d.
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ROUTES TO CHAOS FROM AXISYMMETRIC THERMAL VERTICAL VORTICES IN A
ROTATING CYLINDER

Damián Castaño1, María Cruz Navarro 1 & Henar Herrero 1

1Dpto. Matemáticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain

In this work we study several routes of the transition from a steady axisymmetric vertical vortex to a chaotic flow in a
rotating cylinder depending on thermal gradients and rotation rates. The analysis is done using nonlinear simulations.
For a fixed rotation rate, the chaotic regime appears, as thermal gradients increase, after a sequence of supercritical Hopf
bifurcations to periodic, quasiperiodic and chaotic flows in a scenario similar to the Ruelle-Takens-Newhouse route to
chaos. For moderate values of the rotation rate we find vortices that tilt and displace from the center of the cylinder in a
periodic, quasiperiodic and finally chaotic movement around the central axis. For larger rotation rates the axisymmetric
vortex splits into two symmetric vortices that move periodically around the central axis, and lose the symmetry merging
again in one non-axisymmetric vortex that moves around the central axis quasiperiodically and later chaotically. The
transitions to chaos when the rotation rate is varied at fixed thermal gradients reveal also the appearance of periodic,
quasiperiodic and chaotic states in different routes. Tilted single vortices, double vortices and more complex structures
with multiple vortices are reported in this case. The transitions are studied through a force balance analysis. Results are
of interest as they connect to the behavior of some atmospheric vertical vortices. These results are a continuation of those
in Ref. [1], and have been published in Ref. [2].
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EXPERIMENTAL STUDY OF A ROTATING SPLIT-CYLIDNER FLOW. FIRST RESULTS

Jesús O. Rodríguez-García1 & Javier Burguete 1
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There exist lots of natural and industrial processes where rotating and turbulent flows are present like tornadoes or indus-
trial mixers. This fact has provoked much research to better understand this kind of flows. On one hand, geophysical flows
have a complex behavior which is mainly turbulent, appearing different instabilities, and it isn’t fully understood. On the
other hand, this kind of behavior also appears in many enclosed flows which rules the dynamic of the system, like liquid
mixing processes or liquid transport through pipes. These different situations can be considered as confined systems in
which lots of questions remain unanswered yet.
In order to better study these flows, different experiments using a von Kármán flow driven by propellers have been
performed in our group (see [1], [6], [4]) finding very rich phenomena. Now, we have developed a new experimental
device motivated by different numerical simulations (see [2], [5], [3]).
The new experimental setup consists in a split-cylinder in which each half of the cylinder moves jointly with each end
cap (see Fig. 1). Both halves can move in co-rotation or in counter-rotation. Moreover, we can set the rotating velocity
of both halves independently. In this configuration the internal radius of the cylinder R is fixed, but we can change the
length L of both halves using wider end caps, so we can change the aspect ratio defined as Γ = 2L/R.

1

2
3

4
5

Figure 1. Cross section of the experimental device: (1) aluminum cell; (2) shaft backing; (3) shaft set; (4) methacrylate split-cylinder;
(5) end cap. All the cell is filled with the working fluid.

With the new setup we can study the laminar flow produced at low Reynolds numbers (Re) and the transition to turbulence
or the different symmetry-breaking that should appear when the Re increases according to [2], [5] and [3]. In order to
sweep a large Re range we can use silicone-oil (140cSt at 40◦C) or water as working fluid. The velocity field developed
inside the split-cylinder is measured using both experimental techniques: LDV and PIV. More concretely, we measure the
velocity of silver coated hollow glass spheres (D = 14µm, ρ = 1.65g/cm3) seeded inside the split-cylinder.
The first results have been obtained in co-rotation applying an asymmetric rotation velocity. We have set a main rotating
velocity Ω and a differential rotating velocity ω so the right-half rotation velocity is Ω + ω and the left-half rotation
velocity is Ω−ω. Assuming that ν is the kinematic viscosity of the working fluid, we can characterize the flow inside the
split-cylinder in function of the Re and the Rossby number Ro defined as follows

Re =
ΩR2

ν
, Ro =

ω

Ω
. (1)

Here, we will present the 2D spatial average flow and the time series of the behavior of the flow for the experimental
parameters.
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LINEAR EVOLUTION OF COMPRESSIBLE GÖRTLER INSTABILITY TRIGGERED BY
FREE-STREAM VORTICAL DISTURBANCES

Samuele Viaro1 & Pierre Ricco 1

1The University of Sheffield, Sheffield, UK

A rigorous theory for boundary-layer receptivity to free-stream perturbations must include the interaction of outer on-
coming free-stream disturbances (region FS, Fig.1a) with boundary-layer perturbations (region III, Fig.1a) and the correct
initial perturbation field in the proximity of the leading edge, uniquely determined by the free-stream flow. We adopt
this theoretical framework by combining the work of [1] and [2] to study the receptivity of Görtler unstable compressible
vortices generated by free-stream vortical disturbances (FSVD). The equations describing the boundary-layer dynamics
are the unsteady compressible boundary-region equations, i.e. the full Navier-Stokes equations with the streamwise pres-
sure gradient and the streamwise viscous diffusion terms neglected. Asymptotic matching allows initial and boundary
conditions to be directly connected to the FSVD imposed on the mean oncoming flow (Fig.1a). Neglecting the interaction
with free-stream disturbances, an eigenvalue (EV) framework was derived from the previous initial boundary value (IBV)
framework. Numerically, the system of equations for both frameworks are solved with in-house finite difference codes
of the second order accuracy. The influence of frequency F, curvature and compressibility along the scaled streamwise
coordinate x̂ is investigated using flow parameters from wind tunnel studies on subsonic and supersonic boundary-layers.
The main findings are summarized as follows:

• curvature effects exponentially amplify the instabilities triggered by FSVD;

• compressibility, high-frequency disturbances and small curvature have a stabilizing effect on the flow;

• perturbations with increased stability are shifted away from the wall, inducing regions of unperturbed flow;

• the streamwise wavelength of the perturbations approaches the free-stream value as the flow stabilizes;

• only the IBV framework can fully capture the growth rate of the perturbations σRe =fn(x̂, η);

• sufficiently downstream from the leading edge, the EV solution could be justifiable (Figure 1b).
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Figure 1: Sketch of the asymptotic matching between regions of the domain (a). Streamwise evolution of the growth rate
σRe from the IBV solution at η = 2.0 (lines), parallel EV solution (empty symbols) and non-parallel EV solution (full
symbols) for r∗ = 10m, M = 0.5 (b).
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Boundary-layer transition over concave surfaces caused by centrifugal forces 
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Boundary-layer instabilities cannot develop similarly over concave and flat plates. The boundary layer forming on concave surfaces 
is known as the Go ̈rtler boundary layer [1] and is different from that of a flat plate. The prominent characteristic of Go ̈rtler flows is 
the presence of a centrifugal force acting on the fluid in the wall-normal direction. This resulting force makes the flow prone to 
centrifugal instabilities that may be triggered by radial displacements of the fluid caused by different type of perturbations. These 
centrifugal instabilities, that start the transition process, are characterized by being streamwise-oriented and having a counter-rotating 
motion; and are known as Go ̈rtler vortices [2]. 
As the flow develops in the streamwise direction, three different regions can be distinguished, namely linear, nonlinear and 
transitional regions [3]. The beginning of the nonlinear region is identified with the departure from the Blasius solution due to the 
inception of the Go ̈rtler vortices. These vortices generate a spanwise variation of the streamwise velocity resulting in a wavy velocity 
profile that can be divided into two regions, an upwash and a downwash region. Downstream, the Go ̈rtler vortices develop into 
secondary instabilities that are identified with a meandering motion (sinuous mode) and the generation of horseshoe vortices 
(varicose mode). Finally, in the transition region, the secondary instabilities breakdown into turbulence and a homogenous turbulent 
flow in the spanwise direction is observed where the upwash and downwash regions are no longer discriminated. 
Although some efforts have been made to characterize flows over concave surfaces, different transition scenarios caused by such 
instabilities are not yet well understood. Highlighting the most recent studies, Tandiono et al. [3] experimentally analyzed a domain 
in which the streamwise length was not large enough to obtain a turbulent homogeneous flow in the spanwise direction; and, the 
upwash and downwash regions could still be observed. Numerically, Schrader et al. [4] performed a spatial direct numerical 
simulation (DNS) but only spanwise average values were reported and, thus, there was no spanwise local information that could 
allow to determine the length of this region. Hence, the present work includes spanwise local characterization of the transition region 
that can allow to determine its length and the start of a complete spanwise homogenous turbulent flow. 
Additionally, most DNS studies of Go ̈rtler vortices have considered a temporal framework and there are only few DNS studies 
reporting the spatio-temporal development of the Go ̈rtler instabilities [4,5]. Furthermore, the breakdown to turbulence is not well 
documented and to the best of the author’s knowledge the details of turbulent flow caused by Go ̈rtler breakdown has not been 
reported in the literature so far. Therefore, in order to enrich the available literature and to better highlight the transition mechanism, 
the present study aims at characterizing the transition scenarios in spatially-evolving flows over concave walls through fully resolved 
DNS. The study includes a parametric analysis in which concave plates with different radii (R) are tested with a series of wall 
roughness elements utilized as source of excitation. It is found that the inception of transition is postponed for smaller wall 
curvatures; however, the transition Go ̈rtler number is identical, for all cases, when the streamwise coordinate is non-dimensionalized. 
Moreover, only with high-resolution simulations, the transition region, characterized by the breakdown of the typical mushroom 
structure created in the upwash region [2], can be captured. Due the wall roughness elements imposed at the inlet, a clean transition is 
observed for the very first time where symmetric mushroom structures are elongated and transformed into a filament structure prior 
to their breakdown. Three-dimensional coherent structures in the transition region are then utilized to explain some of the observed 
phenomena. 

Figure 1. At left, streamwise wall shear stresses development which depart from the Blasius solution (dotted line) showing a delay in 
the start of the transition process due to a decrease in the curvature. At center, iso-surfaces of λ2 colored with U/U∞ showing the 
breakdown into turbulence of the horseshoe vortices for the case with concave plate with R = 1m. At right, U/U∞ at different 
streamwise positions (x = 1.1m, 1.9m, 2.4m) showing the development and breakdown of mushroom structures (vertical axis: radial 
coordinate, horizontal axis: spanwise coordinate, in meters) also for the case R = 1m. Incompressible flow. Rex = 1.3x104 at entrance. 
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NONLINEAR THERMOACOUSTICS: FLAMES ON THE EDGE OF CHAOS

Matthew Juniper1
1 Engineering Department, University of Cambridge, Trumpington Street, Cambridge, UK

Thermoacoustic oscillations occur when a flame is confined within an acoustic cavity, such as a combustion chamber.
Their amplitude grows if the oscillating flame releases more heat at times of higher pressure and less heat at times of
lower pressure. The phase between the pressure and the additional heat release is critical. It can vary from cycle to cycle,
resulting in quasiperiodic, multi-periodic, or chaotic oscillations, as observed in experiments and numerical simulations.
Simulations also reveal a multitude of periodic and quasiperiodic unstable attractors, which attract the system in many
directions in phase space and repel in one direction. The system’s state can pass within the vicinity of several unstable at-
tractors before arriving at a stable attractor, which has similar features to bypass transition to turbulence in hydrodynamics.
Sometimes small differences in initial states lead to diverging paths in phase space and different final states.
In some linearly stable thermoacoustic systems, thermoacoustic oscillations can be triggered by a small pulse. A simple
thermoacoustic system containing a stable fixed point, an unstable periodic solution and a stable periodic solution is
examined. The ‘minimal seed’ is found with nonlinear adjoint looping. Growth to the stable periodic solution is shown to
exploit non-normal transient growth around the unstable periodic solution, rather than non-normal transient growth away
from the fixed point.
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CLOSED-LOOP FLOW CONTROL USING A LINEARIZED APPROACH AROUND THE MEAN
FLOW

Colin Leclercq1, Charles Poussot-Vassal 2, Denis Sipp 1 & Éric Garnier 1

1ONERA, DAAA, Meudon, France
2ONERA, DCSD, France

Closed-loop flow control requires the synthesis of a model capturing the input-output behaviour between actuators and
sensors. System identification techniques can be used to obtain the relationship between inputs and outputs directly from
data [3, 4], but lack physical insight. Alternatively, physics-based models can be derived by projecting the governing
equations onto an appropriate basis of modes (POD modes, global modes, BPOD modes, etc.) [6, 1]. In the case of
linear models, the Navier–Stokes equations are linearized about their fixed point: the base flow. For strongly nonlinear
flows, this approach may be ineffective as the system evolves far from the fixed point. However, dynamic linearity may
still occur, where the response to a small-amplitude momentum forcing a(t)fc is a small perturbation uc(t) of the natural
dynamics [3, 4]. We therefore seek to obtain a linear model by considering small perturbations of the mean flow u rather
than the base flow ub. This approach involves the resolvent operator R(ω,Lu), which depends on the angular frequency
ω and the Jacobian Lu about the mean flow [5, 2]. The open-loop transfer function between the Fourier transforms of the
forcing amplitude a and of a measurement m = 〈m,uc〉 is simply given by

G(ω) = 〈m,R(ω,Lu)fc〉, (1)

where 〈·, ·〉 is the canonical inner product between two complex fields, fc and m are two fields characterising the actuator
and the sensor, and ‖fc‖ = 1. This expression can then be used to design a linear controller, which is valid in the vicinity
of the unperturbed mean flow. As control is applied, the flow drifts towards a new mean state, and the control law may
then be adapted to follow these changes. Since the mean flow incorporates information about nonlinearities, we hope to
demonstrate that the method efficiently captures the input-output behaviour in flows at large Reynolds numbers, while
being much simpler to implement than more traditional POD-based models [6].
As a first step, the method is validated on the incompressible two-dimensional cavity flow described in Barbagallo et al.
[1] (see figure 1). We will then assess the efficiency of the approach on a noise-amplifier flow (backward facing step) and
at higher Reynolds number Re = O(104−5), using ZDES models of these flows.
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Figure 1: (a) Streamwise velocity component of the mean flow u over an open cavity at Re = 7500 (same model as [1],
using FreeFem++). (b) Timeseries of the perturbation kinetic energy with respect to the base flow; the flow is initalized
with the base flow and a small perturbation parallel to the most unstable eigenmode. The controller, designed from within
the limit cycle, leads to a large decrease (> 70%) of the perturbation kinetic energy before saturation to a new mean state.
The actuator is located at the upstream edge while the shear stress sensor is near the downstream edge [1].
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EFFECTS OF POROUS COATINGS ON FLOWS AROUND A 3D HEMISPHERE : APPLICATION
TO FLOW CONTROL

Chloé Mimeau1, Iraj Mortazavi 1 & Georges-Henri Cottet 2

1 Laboratory M2N, CNAM, Paris, France
2Laboratory Jean Kuntzmann, Université Grenoble-Alpes, Grenoble, France

Flows throughout porous media may be observed in multiple natural structures like vegetation canopies, birds’ covert
feathers or endothelial glycocalyx (also called “sweet shield”) of blood vessels. The presence of such porous layers
actually enables a damping of the flow-induced surface instabilities, therefore smoothing the flow dynamics in the vicinity
of the solid-porous-fluid interface. Based on these observations, we perform in this work direct numerical simulations
(DNS) of flow past a 3D hemisphere totally or partially covered with a porous layer. The main reason for choosing the
hemisphere geometry is its similarity to the side view mirrors of a ground vehicle and the possible extension of this study
to passive flow control and drag reduction.
In this study the hemisphere is covered with a permeable coating of thickness τ = 10% of the hemisphere diameter and
four different geometrical configurations are considered. The configuration 1 corresponds to a porous layer applied on
the whole hemisphere surface, configuration 2 involves two porous poles on top and bottom of the body, configuration
3 contains a porous zone corresponding to the rotation of the previous poles around the z-axis (this case is denoted as
"ring inlay") and configuration 4 implements an "annular coating", consisting in a thin porous ring. The simulations are
performed at a low and a moderate Reynolds number, namely Re = 300 and Re = 1000. The results are compared to the
one obtained with a fully solid sphere in terms of aerodynamic forces, phase diagrams and time averaged/instantaneous
vorticity fields. It turns out that, for both Reynolds numbers, configuration 1 (porous layer) allows to recover a planar
symmetric wake (which was not the case with the solid hemisphere) and configuration 3 (ring inlay) provides the best
results in terms of drag reduction with −21% at Re = 300 and −16% at Re = 1000 compared to the solid body (cf Fig.
1).
The numerical method used in this study is an hybrid vortex-penalization method. The resolution of the fluid flow is
performed with a semi-Lagrangian method called the remeshed vortex method [2] and the modeling of flow in solid-fluid-
porous media is realized through an immersed boundary approach called the Brinkman penalization method consisting in
adding a forcing term, derived from the Darcy equation, in the Navier-Stokes equations [1].
A 3D linear global stability analysis [3] is being developped at Re = 300 in the context of the present hybrid vortex
penalization method. It will allow to study the effects of porous coatings on the unstable global mode in flow past a
hemisphere and to explain the delay in transition achieved with configurations 1 and 3.

Figure 1. Effects of porosity around a 3D hemisphere at Re = 1000. a) Comparison of the vorticity (a) and the drag force Fx (b).
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A method to study flow structures 

 
Soledad Le Clainche1 & José M. Vega1 
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The main goal of this work is based on studying complex flows. These types of flows are found in nature or in several industrial 
applications, such as aerospace engineering, food processing or even physiological fluids. For this reason, studying and 
understanding complex flow behavior is a research topic of high interest. We present a method, higher order dynamic mode 
decomposition (HODMD)[1] that is suitable to analyze flow structures. This method combines singular value decomposition (SVD) 
with DMD [2] and Takens' delay embedding theorem [3] to approximate flow dynamics. HODMD has been successfully applied to 
study several types of cases that cover from non-linear dynamical systems, to complex fluid dynamic problems [4]. We will present 
the good performance of HODMD applied to study noisy experimental data (transitional or thermal flow), and its extrapolation 
properties, which make this method a suitable tool that can be used to reduce the computational cost in numerical simulations. 
Finally, we will briefly introduce the spatio-temporal HODMD analysis [5], to calculate flow structures, defined as traveling waves. 
Some examples of the wake of a wind turbine or the thermal convection in a rotating spherical shell will be presented at the time of 
the conference. 
 
 
 
 
References 
 
[1] S. Le Clainche, J.M. Vega, Higher order dynamic mode decomposition, SIAM J. of Appl. Dyn. Sys., 16(2), 882-925, 2017. 
[2] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. of Fluid Mech. 656, 5–28, 2010. 
[3] F. Takens, Detecting strange attractors in turbulence, Lecture Notes in Math., D.A. Rand and L.-S. Young, eds., Springer, Berlin, New York, 898, 
366–381, 1981. 
[4] S. Le Clainche, J.M. Vega, J. Soria, Higher order dynamic mode decomposition of noisy experimental data: the flow structure of a zero-net-mass-
flux jet (submitted to Exp. Therm. and Fluid Sci.)  
[5] S. Le Clainche, J.M. Vega, Spatio-Temporal Koopman Decomposition (submitted to J. of Nonlin. Sci.)  
   

 



EUROMECH SYMP. 591: 3-D INSTABILITY MECHANISMS IN TRANSITIONAL AND TURBULENT FLOWS, 18–20 SEP. 2017, BARI, IT

SPECTRAL PROPER ORTHOGONAL DECOMPOSITION AND ITS CONNECTION WITH
DYNAMIC MODE DECOMPOSITION AND RESOLVENT ANALYSIS

Aaron Towne1, Oliver T. Schmidt 2 & Tim Colonius 2

1Center for Turbulence Research, Stanford University, Stanford, CA, USA
2Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA

Modern numerical and experimental investigations of turbulent flows lead to enormous data sets that are often interrogated

using modal decomposition techniques such as proper orthogonal decomposition (POD) [2] and dynamic mode decom-

position (DMD) [5]. The majority of applications of POD have used a version of the method that generates modes that

depend only on spatial coordinates. This talk will focus on a lesser-used form of POD called spectral proper orthogonal

decomposition. To be clear, we are not referring to the recent method of Sieber et al. [6] that was given the same name;

instead, we are using the terminology of Picard & Delville [4] to describe a space-time formulation of POD for stationary

flows that goes back to the original work of Lumley [2]. The first part of the talk will compare spectral POD with the

more familiar “space-only” form of POD as well as dynamic mode decomposition. We will show that spectral POD is

better suited than space-only POD for identifying physically meaningful coherent structures and that spectral POD modes

can be viewed as optimal averages of DMD modes computed for an ensemble of realizations of a stationary flow. In the

second part of the talk, a connection will be made between spectral POD and resolvent analysis, which is often used to

model linear non-modal growth mechanisms in turbulent flows [3]. We will show that spectral POD and resolvent modes

are identical when the resolvent-mode expansion coefficients are uncorrelated. More generally, we will show that the

expansion coefficients must be regarded as statistical quantities in order for the resolvent-mode expansion to properly

capture the flow statistics and that treating them as deterministic quantities, as is done in most existing models, imposes

a fundamental limitation on the quality of the flow approximation that depends on the low-rank nature of spectral POD

modes rather than the resolvent modes. These results will be demonstrated using two example problems: the linearized

Ginzburg-Landau equation and a turbulent jet. The Ginzburg-Landau problem provides a simple model that can be used

to highlight our theoretical results. For example, Figure 1 shows the equivalence of spectral POD and resolvent modes

under white-noise forcing. The second problem relies on an extensive LES database [1] and enables comparisons between

the different methods for a realistic application.
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Figure 1. Equivalence of spectral POD and resolvent modes for white-noise forcing of the linearized Ginzburg-Landau equation.

Left: SPOD eigenvalues (circles) and resolvent gain (lines). Right: energy-weighted mode-shapes.
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LOW-RANK BEHAVIOR OF TURBULENT JETS

Oliver T. Schmidt1, Georgios Rigas 1 & Tim Colonius 1

1California Institute of Technology, Pasadena, CA 91125, USA

Large-scale coherent structures are educed from three large-eddy simulations of turbulent isothermal jets at different Mach
numbers by means of spectral proper orthogonal decomposition. The modal energy spectra reveal a low-rank behavior that
leads to a preferred amplification of Kelvin-Helmholtz-type wavepackets within certain frequency bands. We investigate
the linear frequency response of the turbulent mean flow using the same numerical framework as in [2], and demonstrate
that a resolvent analysis is capable of predicting the jet’s statistical low-rank behavior and the associated modal structures
accurately. The results also explain why previous wavepacket models based on the parabolized stability equations were
largely successful in predicting modal shapes for certain frequencies, but not at others, particularly for the axisymmetric
mode. A good qualitative agreement is found between the optimal resolvent gains and empirical modal energies in terms
of their relative order and frequency dependance in figure 1(a-b). The leading m = 1 mode is dominant up to St ≈ 1.
The predicted abrupt change to low-rank behavior is clearly observed for m = 0. The five leading SPOD and optimal
resolvent response modes are compared in figure 1(c-l) for St = 0.6. Both analyses identify a Kelvin-Helmholtz (K-H)
type instability as the dominant coherent structure. We show in detail that two different mechanisms are at work in the
turbulent jet: the modal spatial instability of the initial shear layer, and non-modal spatial growth downstream of the
potential core. The latter is optimally triggered through the Orr-mechanism[3], but is likewise observed in the empirical
modes. According to [1], low-rank behavior in weakly non-parallel open flows such as jets is expected if the mean flow
is convectively unstable. We note that this classification into modal and non-modal refers to the classical spatial, quasi-
parallel stability analysis. In our resolvent analysis, the response is always non-modal in the sense that it is a superposition
of a stable spectrum of modes. The better distinction is between low rank behavior associated with the dominant K-H
mode and non-low-rank behavior at low frequencies. According to [1], low-rank behavior is expected for this open,
convectively unstable flow, but these results show a different behavior at low frequencies.

Figure 1. Empirical SPOD modes (left) and optimal resolvent response modes (right) for St = 0.6 and m = 0. The normalized
pressure is shown. The leading resolvent response in (b) accurately models leading SPOD mode in (a). Suboptimal resolvent and
higher SPOD modes exhibit similar structures, but should not be compared one by one because of their similar gains.

We acknowledge the support of the Office of Naval Research (grant No. N00014-16-1-2445) with Dr. Knox Millsaps as program
manager. This research was also supported in part by the Boeing Company through a Strategic Research and Development Relationship
Agreement (CT-BA-GTA-1).
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DELAY OF THE PIPE FLOW INSTABILITY VIA POLYMER SOLUTE

K.Y. Volokh1∗
1 Faculty of Civil and Environmental Engineering, Technion - I.I.T., Israel

The remarkable phenomenon of the drag reduction via addition of small amounts of polymer molecules to a Newtonian
solvent was observed experimentally long ago. However, the theoretical explanations of this observation are not over-
whelming yet. In this talk, we present a possible theoretical account of the phenomenon. It is based on the use of the
Navier-Stokes model with viscous strength for the solvent and the upper-convected Maxwell model for the polymer so-
lute. Simple analytical calculation shows that the laminar flow of the solvent is stabilized by an addition of the polymer
solute and, thus, the transition to the chaotic and slower on average turbulent motion is suppressed.
E-mail: cvolokh@technion.ac.il
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NUMERICAL BIFURCATION ANALYSIS OF THREE-DIMENSIONAL STEADY FLOWS IN A
SUDDEN EXPANSION

Y. Guevel1, G. Girault1,2, and J.M. Cadou1

1 Univ. Bretagne Sud, FRE CNRS 3744, Institut de Recherche Dupuy de Lome, Lorient, France,
2 Centre de recherche des Ecoles de Saint-Cyr Coëtquidan, Ecoles Militaires de Coëtquidan, Guer, France

This study is focused on the parametric analysis of the three-dimensional flow in a sudden expansion. Bifurcation analysis

methods based on the Asymptotic Numerical Method [4, 5, 6] are used. Those specific methods allow us to follow

regular solution paths, to detect critical solutions and to automatically switch branches. High performance computing is

implemented in an open-source multi-physical software ELMER [3], coupled with the direct Solver MUMPS [1] and the

multi-threading library OpenBlas [7]. It makes it possible to perform bifurcation analysis for models with high number of

degrees of freedom (107 d.o.f.), in affordable computing times.

Remarks are made for the branch-switching method in the case of symmetry breaking bifurcations. New results of primary

and higher rank bifurcations are presented.

It is proposed to investigate, for one expansion ratio, fundamental and bifurcated branches in order to reveal primary

and secondary bifurcation. Additionally, branch switching method based on power series analysis is successfully tested.

Thus, it is established the corresponding bifurcation diagram (see Fig.1). Evolution of the critical Reynolds number for the

primary bifurcation according to the span-wise aspect ratio is obtained. Finally, in-depth analysis permit to obtain several

kinds of bifurcation. Velocity and pressure for flows and branch switching specific vectors (see Fig.1) are depicted. It is

also confirmed the existence of a span-wise symmetry breaking bifurcation for smaller aspect ratio than expected [2, 6].
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Figure 1. (Left) Bifurcation diagram for the case E = 3, Ai = 8, L = 55h. (Middle) Left bifurcation mode ΨPB1 and (Right)

bifurcation mode ΦPB1 for the first primary bifurcation "PB1". Velocity components and pressure for E = 3, Ai = 5, L = 30h.
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THREE-DIMENSIONAL INSTABILITY OF THE FLOW AROUND A SPHERE

Andrea Sansica1,2, Jean-Christophe Robinet 2, Frédéric Alizard2 & Eric Goncalves3
1 Centre National d’Études Spatiales, Direction des Lanceurs, Paris, France

2Laboratory of Fluid Dynamics, ENSAM, Paris, France
3 Pprime Institute, ISAE-ENSMA, Poitiers, France

The onset of large scale unsteadiness for viscous fluids past axisymmetric bodies represents one of the major subject of
study for several modern engineering applications, especially in the field of launcher after-bodies. In this respect, the
wake behind a sphere may be considered as a representative simplified case for axisymmetric bodies. Both numerical
simulations and experiments [1, 2, 4, 5, 6] carried out at low Reynolds numbers reveal that a first bifurcation occurs when
a critical Reynolds number is reached (Rec,1 ≈ 210), yielding to the loss of axial symmetry of the steady base flow. The
wake is consequently shifted along the normal direction and exhibits a pair of steady streamwise vortices that extend on
a very long distance downstream of the body. Although the flow is no longer axisymmetric, a reflectional symmetry of
a plane in the streamwise direction still exists. When the Reynolds number is further increased beyond a second critical
value (Rec,2 ≈ 270) the flow undergoes a supercritical Hopf bifurcation and is dominated by a low-frequency shedding
of hairpin-like vortices in a Strouhal number range between St ≈ 0.1 − 0.2. The objective of this study is to carry out
a fully three-dimensional linear stability analysis without any assumption on the base flow and follow the evolution of
the two bifurcations with the Mach number, as a follow up of the study by [3]. The analysis is performed for a Reynolds
number range between 200 − 320 and up to supersonic velocities. The density gradient contours in a Schlieren-like
flow visualization for the baseflow at Re = 280 and M = 1.2 in Fig. 1-left shows that a bow shock is created. The
iso-surface of the zero-streamwise velocity is also reported and shows the axisymmetric configuration of the separation
behind the sphere. The dominant eigenmodes of are extracted by means of an Arnoldi algorithm coupled to the the
linearized full Navier-Stokes equations. In this way, it is possible to draw a stability map (Fig. 1-right) that shows for
each Reynolds-Mach number combination whether the leading eigenmode is a steady axisymmetric (full circle), steady
planar-symmetric (full triangle) or unsteady planar-symmetric (empty triangle) mode. The effect of the increasing Mach
number is to stabilize the flow and to move the two bifurcations towards higher Reynolds numbers and close to each other.
The evolution of the eigenfunctions with the Mach number will also be shown.
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Figure 1. Left: Baseflow at Re = 280 and M = 1.2; Contours of the gradient of density and zero-streamwise velocity iso-surface.
Right: Stability map; Symbols are: full circle=steady axysimmetric, full triangle=planar-symmetric and empty triangle=unsteady
planar-symmetric.
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SUBCRITICAL AND SUPERCRITICAL TRANSITION IN CURVED PIPES

Jacopo Canton, Ramis Örlü & Philipp Schlatter
Linné FLOW Centre, KTH Mechanics, Stockholm, Sweden

The flow through curved pipes has received increasing attention in the past decades, but several phenomena still miss an
exhaustive explanation. Bent pipes are fundamental components in various industrial devices (for a review see Ref. [8]),
and are also studied in the medical field, being an integral part of vascular and respiratory systems [2, 3]. The present
work focuses on the flow inside a toroidal pipe, which constitutes the common asymptotic limit between two ‘real’ flow
cases: the spatially developing and the helical pipes. The flow is determined by the Reynolds number Re and a single
geometrical parameter: the curvature δ (the ratio between pipe and torus radii).
The transition to turbulence of this flow has received a considerable amount of interest in the past decades. The recent
works by Canton et al. [4] and Kühnen et al. [6] determined that the flow is linearly unstable, and undergoes a Hopf
bifurcation, for any curvature greater than zero and for Re ≈ 4000. Different eigenmodes, in the shape of travelling
waves, contribute to the neutral curve for the flow (see figure 5 in Ref. [4]). This behaviour is in contrast to the flow in a
straight pipe which undergoes subcritical transition for Re & 2000 [1].
The transition scenario is different for low curvatures: while for δ ≥ 0.028 direct numerical simulations (DNS) confirm
the presence of a Hopf bifurcation [4], for δ < 0.028 no clear boundary has been observed. For low curvatures a bent pipe
appears to behave similarly to a straight pipe: the flow undergoes transition to turbulence despite being linearly stable
to infinitesimal perturbations [6, 7]. We investigate this complex behaviour by means of nonlinear DNS performed with
the spectral element code Nek5000 [5] and, in order to isolate the dominant structures in the flow, we analyse the flow
by three-dimensional proper orthogonal decomposition (POD). We also analyse the transition process by quantifying the
intermittency level and measuring the lifespan of turbulent events. Preliminary results indicate that, indeed, the flow does
not abruptly transition from the steady to the unsteady regime. Instead, transition occurs over a range of curvatures and
Reynolds numbers indicating a subcritical behaviour.

Figure 1. (Top): Instantaneous flow field for δ = 0.01 and Re = 3000 represented by isocontours of negative λ2 coloured by
streamwise velocity magnitude (u) and azimuthal velocity magnitude (w) on a longitudinal section. (Bottom): Corresponding most
energetic POD mode showing a travelling wave with a wavelength of about 5 pipe diameters.
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ONE-WAY NAVIER-STOKES EQUATIONS:
GLOBAL STABILITY ANALYSIS VIA EFFICIENT SPATIAL MARCHING.

Tim Colonius1, Georgios Rigas1, Aaron Towne2 & Michael Beyar3
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3Boeing Research & Technology, Huntington Beach, CA, USA

Hydrodynamic stability analysis is a critical tool for transition prediction in the laminar regimes, and, when applied to
the mean of a turbulent mean flow has been used to predict coherent structures in some flows. Stability tools have been
successfully applied to canonical two-dimensional flows over the last years. However, practical flows of relevance to the
aviation industry are often three-dimensional (3D). For 3D flows questions of stability, receptivity, secondary flows, and
coherent structures, require the solution of large 3D, partial-derivative eigenvalue problems.
A method for constructing well-posed one-way equations for calculating disturbances of slowly-varying flows was re-
cently introduced[2]. The linearized Navier-Stokes equations are modified such that upstream propagating modes are
removed from the operator. The resulting equations, termed one-way Navier-Stokes (OWNS) equations, are stable and
can be solved efficiently in the frequency domain as a spatial initial value problem in which initial perturbations are spec-
ified at the domain inlet and propagated downstream by spatial integration. Since the method accurately tracks the full
spectrum of downstream propagating modes, it is well suited for studying multi-modal interactions and non-modal insta-
bilities, situations for which the traditional parabolized stability equations (PSE) are not well suited. The regularization of
the governing equations permits a very fast spatial marching procedure that results in a huge reduction in computational
expense.
The OWNS equations have been applied in a variety of slowly-varying flows, including wall-bounded flows and jet flows
in subsonic and supersonic regimes [2, 1]. Specifically, we have examined the spatial stability of canonical two- and three-
dimensional boundary layers, corresponding to the Blasius and the Falkner-Skan-Cooke flows for predicting the evolution
of unstable Tollmien-Schlichting waves and crossflow vortices, respectively. Also, turbulent circular and non-circular jets,
with two and three inhomogeneous directions, have been examined in order to predict large-scale wavepacket structures
and their acoustic radiation. Finally, the OWNS framework has been also adapted to perform resolvent analysis, which is
the topic of a companion contribution in this volume.

Figure 1. Three-dimensional stationary crossflow disturbance in physical space obtained from OWNS. Falkner-Skan-Cooke boundary
layer with spanwise wavenumber β = 0.19 and frequency ω = 0. Contours of the real part of streamwise velocity perturbation are
shown.
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INSTABILITY OF THE FLOW ACROSS A CIRCULAR APERTURE IN A THICK PLATE

Raffaele Longobardi1,2, David Fabre 1 & Paolo Luchini 2

1Institut de Mécanique des Fluides de Toulouse (IMFT), Toulouse, France
2DIIN, Universitá degli studi di Salerno, Fisciano, Italy

Jet flows are well known to be strongly convectively unstable, i.e. they strongly amplify hydrodynamic perturbations in the
downstream direction. In the case the jet is formed by the flow through a circular aperture, experiments and simulations
[3, 4] show that if the plate is thick enough, strong periodic oscillations can occur and lead to characteristic whistling tones,
suggesting the existence of a feedback mechanism leading to self−sustained oscillations. The objective of this work is
to clarify this mechanism using linearized Navier-Stokes equations. We show that, contrary to previous expectations, the
feedback mechanism is not related to acoustics but that an instability can exist in a purely incompressible framework [2].
Under the hypothesis of small-amplitude perturbations, we first solve a non−homogenous linear forced problem with an
imposed oscillating flow rate through the aperture. The solution allows to compute the impedance of the hole, defined
as the pressure jump divided by the flow rate. We compute the impedance as function of the frequency ω, the Reynolds
number and the ratio between the length of the hole and its diameter β. For thin holes, we compare our viscous results
with existing models derived in the inviscid case [1]. Moreover, we show that for thick holes the impedance can have a
negative real part, indicating that the flow can act as an energy source when coupled to an outer system, for instance an
acoustic resonator.
In a second step, we conduct a global stability analysis, which consists of solving a homogeneous linear eigenvalue
problem. We confirm the existence of globally unstable mode in the range of parameters predicted by the impedance
criteria. Analyzing the structure of the global modes, we show that the instability is associated to the existence of a
recirculation region in the thickness of the hole.
Note that to solve both the homogenous and nonhomogenous linear problems we had to design a specific method in order
to overcome the problems associated to the boundary condition in the farfield of the jet because of the very strong spatial
amplification. An original method using a complex mapping of the axial coordinate is introduced. It is shown that this
method greatly increases the range or Reynolds numbers investigated.
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Figure 1. (a) Axial component of the baseflow at Re=1500 and β = 1. (b) Vorticity of the perturbation of the forced problem at
Re=1600, β = 1 and ω = 2.07; the dashed line shows the boundary of the recirculation region.
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In this talk, we show that two acoustic waves impinging on a compressible boundary layer at certain angles may interact
to generate a forcing in resonance with a nearly neutral Tollmien-Schlichting wave. The latter is thus excited near the
lower branch of the neutral curve and subsequently undergoes exponential amplification.
The ability of a flow in a boundary layer to convert external perturbations (sound, heat, turbulence, vibrations of a wing
surface) into instability modes is termed receptivity of a boundary layer. According to Morkovin [1], the first who
coined the term "Receptivity", this represents the first stage of the transition process, which can consist of different steps
depending on the type of flow and the strength of the external disturbance. The main goal of receptivity is therefore the
determination of the amplitudes of the generated T-S waves and, related to the former, to find out which types of external
disturbances can more easily provoke these instability waves.
It was not until 1947 [2] that low-turbulence wind tunnels were available and serious boundary layer receptivity studies
were carried out experimentally. On the other hand, the analysis of the receptivity of a boundary layer to acoustic pertur-
bations began with Fedorov [3], who was the first to study the interaction of sound waves with a growing boundary layer,
leading to some scattering but not to the excitation of T-S waves; later on, almost at the same time both Ruban [4] and
Goldstein [5] described the mechanism by which relatively weak sound waves interact with a small defect along a flat
plate’s surface to excite T-S waves downstream.
We will begin our analysis with a survey of the different scenarios featuring resonant interactions leading to excitation of
T-S waves. Later on, a triple-deck formalism consisting on the upper, main and lower decks is adopted (via asymptotic
analysis of the Navier-Stokes equations in the limit Re → ∞). In order to obtain the uniformly valid solution near
the neutral point, it is necessary ot include the non-parallel flow effect, which becomes important in an O(Re−3/16)
neighbourhood [6], [7]. Asymptotic expansions for the fluid variables will be constructed across the decks and suitable
matching and boundary conditions will be derived. Finally, expressions for the coupling coefficient and the T-S wave’s
amplitude will be presented, for a wide range of values of βTS , βS , ωS , αS and Mach number.
The receptivity mechanism is similar to that due to the interaction between acoustic and vortical disturbances [8], but a
difference is that both acoustic waves penetrate into the lower deck where they interact to make an extra contribution in
addition to that from the interaction in the upper deck, The mechanism operates in both subsonic and supersonic regimes,
but it is found to be particularly efficient in the latter regime when the sound waves have low frequencies of the same
order of magnitude as the instability mode. The present mechanism is found to be very efficient when compared to the
interaction of a sound wave and a convective gust [8].
Unlike the mechanism in the Goldstein-Ruban theory, the scale conversion does not require any wall roughness and
therefore operates over smooth surfaces, like a flat plate. This roughness-free interaction is also observed between a
sound and a vortical wave, as described in [8].
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